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PREFACE

This investigation was conducted by Scientific Systems, Inc.,
Cambridge, MA from June 1, 1977 under contract N00014-76-C-0780 for
the Office of Naval Research, Washington, DC. This report is the second
annual technical report and includes results through May 31, 1978.
The sponsoring office was the Vehicle Technology Program headed by
Mr. David Siegel. Mr. Rdbert von Husen served as the Navy
Technical Monitor for the program.

The principal investigator for the study was Dr. Raman K. Mehra.
He was assisted by Dr. James V. Carroll. L. Washburn and M. Riehm

typed the final report.
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CHAPTER 1

Introduction and Summary

1.1 Scope of Work Effort

High angle-of-attack phenomena have been of interest to aerodynamicists,
aircraft designers, pilots and control system analysts ever since the advent
of modern high performance aircraft. Due to the concentration of inertia
along the fuselage, the modern jet fighters are highly susceptible to
post-stall departures and spin. In spite of extensive design effort, modern

aircraft still inadvertently enter spins which sometimes result in loss

— oalx S Wk I S a2 —

of 1ife and/or property. Extensive wind-tunnel testing and radio-controlled
flight testing has been done over the last twenty years to gain better
understanding of the dynamic instabilities at high angles-of-attack. A
basic problem has existed in interpreting these data and in making predic-
tions of aircraft dynamic behavior so as to achieve close agreement with
flight test data.

Aircraft dynamic behavior at high angles-of-attack is highly noniinear
and in the past there has been a lack of suitable tzchniques for analyzing
the global behavior of nonlinear systems. Under a previous project with
the Office of Naval Research, Scientific Systems, Inc. has developed a new
approach based on Bifurcation Analysis and Catastrophe Theory Methodology
(BACTM)., The approach has been applied to specific jump and limit cycle
behavior such as roll-coupling, pitch up, post-stall departure, divergence,
apin entry, developed erect spin, and spin prevention and recovery. The

aircraft used for the study of spin motions was selected because of the




completeness of the aero data in the spin flight regimes, and because it
is representative of modern fighters. This model was also used fir studies
of non-spin, high angle-of-attack behavior,

Under this project, the full six DOF aircraft model was implemented,
and used not only for the above studies, but also for several new de-
velopments in the BACTM methodology. The new developments are basically
in the area of jeneralizing apd improving the numerical techniques for
computing equilibrium and bifurcation surfaces, in expanding the com-
prehensiveness of the physical model and environment and in the study of
chaotic motions.

The work on this project has centered around the application of

BACTM to study the spin characteristics of a "variable sweep" fighter

aircraft. The aerodynamic data for this model roughly corresponds to
experimental data for the F-111, although modifications in some of the
numbers, particularly Cn’ are required to make simulation results agree
with flight test data. We have designated this simulation model as
Aircraft F.

Spin behavior is typically a post-stall phenomenon, and is character-
ized by angles-of-attack much in excess of the stall value of angle-of-
attack. It is also possible that spin conditions will follow a roll
departure motion. A certain type of spin, the erect flat spin, has
been given particular emphasis in this work effort. This spin is featured
by values of o (angle-of-attack) in the 75-85 degree ranges; 3 vertical
body rotation rate, which is also constant over time, and center of mass
motion which is basically helical, with the axis parallel to local

vertical; and a noticeably prominent yaw rate.
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The study of spin behavior begins with an analysis of the types and
nature of equilibrium spin conditions. Because gravity plays a role,
the basic system of equations is eighth order (the six force-moment equa-
tions, plus two kinematical equations for pitch and roll angles). Gravity
is not a significant factor in the so-called "roll-coupling" flight regime,
studied previously (Mehra et al. (1977)). In the case of spin equilibrium
conditions, the presence of a non-z;ro gravity term causes the roll and
pitch angles to enter the basic sixth-order system.

The highly nonlinear nature of flat spin, and the extreme values of
state variables which typify it, require that the aerodynamic data extend
over values of o and sideslip (B) which are well beyond the ranges of
readily accessible data. The data we have used here for aircraft F were
available in tabular form, and do encompass the necessary ranges (Moore
et al. (1971)). Spline function polynomials were used to model this aero
data because these functions are continuous at all interior points in-
cluding certain derivatives.* Spline functions can therefore give accurate
results over all points in the region with the accuracy needed to insure
efficient numerical solution of the equilibrium and bifurcation surfaces.
There is also flexibility, in that numerical techniques which utilize
analytical expressions for the derivatives of the aero coefficients, can
effectively utilize the spline approximation. Our results have confirmed
the soundness of this choice.

A final note on the simulation model. The controls chosen were the

standard aerosurface controls, aileron, elevator and rudder deflections.

Thrust is not used as a control explicitly. This is not an undue restriction,

*This is true up to second order derivatives when cubic or bi-cubic splines
are used.

[ ]




since thrust is generally maximum during high-a maneuvering or is reduced
to idle during spin.

Equilibrium surfaces for spin conditions were computed with satis-
factory accuracy and efficiency by means of a parametric continuation pro-
cedure based on the methods of Davidenko (1953) and Lahaye (1934). In
its basic form, this procedure solves a system of nonlinear algebraic
equations by varying a parameter from a value for which the unknowns are
readily determined to the actual va]de of the basic system., In our appli-
cation, the parameter is one of the aerosurface controls and the unknowns
are the eight state variables. The starting point is determined by a
Newton-Raphson scheme, with initial guesses for the state and control at
values which correspond to expected spin situations. In aircraft F, for
example, the equilibrium pitch and roll rates are about 20 deg/sec, and
yaw rate is roughly 10 times as large. Velocity is about 450 feet per
sec, angle-of-attack about 83 deg. Sideslip, pitch and roll equilibrium
angles are 5 deg or less. It has been verified that the equilibrium angular
velocity is vertical. The continuation parameter, say rudder deflection,
is then extended over its range from this starting point.

The particular continuation technique employed here is principally an
amalgamation of methods proposed by Klopfenstein (1961), Keller (1977),
and Kubicek (1976). These methods arose out of the necessity of dealing with
various singularities which typify nonlinear equilibrium surfaces. The most
important of these singularities are 1imit points and bifurcation points.
Kubicek, Keller and Klopfenstein have added an arclength parameter, making
it the independent variable, to eliminate the 1imit point singularity. Kubi-

cek and Klopfenstein use a purely Euclidean arclength parameter, while Keller




introduces a family of “pseudo" arclength parameters which help to allow one to
solve for the slopes of all of the solution curves which pass through a bifur-
cation point. In this way, the bifurcation points may be isolated.

Continuation proceeds on the original branch using the knowledge of its

slope and "jumping”" over the actual bifurcation point. Then, one returns

to the bifurcation point and begins continuation along the secondary branches.

In addition, Keller's scheme may be extended to function spaces, so that
differential systems such as Two-Point Boundary Value Problems may also be
solved. The methods of Kubicek and Keller enable the computation of the
complete equilibrium or bifurcation surface with just one computer run,

and are typically more "robust" than Klopfenstein's method.

The eigenvalue analysis of the equilibrium surfaces for aircraft F
show regions of jump, limit cycle, hysteresis and other phenomena similar
to those found for aircrafts A, B and H investigated earlier (Mehra et al.
(1977)). In the case of the spin phenomena, the magnitudes of the jumps
are typically smaller, though there is indication that these jumps would
go from flat spin to an intermediate spin (o ~70°) to steep spin (a = 45°).
Additionally, jumps to 1imit cycles or oscillatory spins are also present.

The aircraft F model has also been used to generate equilibrium sur-
faces in non-spin regions prior to departure. A major consideration
of such non-spin regimes is that roll and pitch angles generally do not
have equilibrium (steady state) values, so that these variables must be
decoupied from the basic system. This is done by neglecting gravity
effects. The results are similar to those obtained with previous models
(e.g., aircraft H). However, since angle-of-attack data were available

only to -10 degrees, roll daparture studies with aircraft F were somewhat
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limited. A study of the nature of equilibrium surfaces in the "transition
region between roll departure and flat spin has also been made.

In what may prove to be a very useful result in the analysis of
spin motions, it was found that equilibrium surfaces in the spin regime,
which have all of the features of the standard spin equilibrium surfaces,
can be generated using the lower-dimensional "non-spin" equilibrium
system. In this system, gravity is assumed to be zero. It should be
emphasized that the numerical results are often different, but the shape
of the curves is quite similar. This approximation has been made only in
the study of flat, developed spins. These spins are characterized by

high o values, and low spin equilibrium pitch angles (OSPIN)' With

SPIN
this situation, gravity terms in the dynamic equation for o are smalil.
Finally, for many of the spin conditions, changing the value of V,

the velocity magnitude, by 30% had a greater effect on the equilibrium
curves than did eliminating gravity.

Time history runs of spin conditions for aircraft F have been made,

and results confirm the predictions of the equilibrium surfaces. Those

runs which begin in the developed flat spin condition follow quite accurately

the results predicted by the spin equilibrium curves. Runs which attempt

to achieve flat spin from non-spin conditions were also made. It has

been found that, as reported in Bihrle (1976), ensuing motion in spin
regions is highly sensitive to both the initial conditions and the control
sequencing. Also, we discovered that it is much easier, for the given simu-
lation model, to achieve equilibrium spin from "trim" flight conditions

(controls neutral) when the velocity magnitude is held fixed. This is
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equivalent to both adjusting thrust magnitude and vectoring the thrust,
to keep it aligned with the current velocity vector and keeping con-
stant magnitude. This is an approximation, but it does obviate the
need at the current time to become concerned with the role of vehicle

thrust in post stall and spin entry conditions. Such a concern can

be more readily dealt with when more comprehensive models such as the F-4
are implemented. Similarly, spin recovery simulations have been made,

and the results again indicate that the aircraft F model is highly sensitive
to the recovery control sequence. We expect to develop a systematic re-

covery methodology once the spin bifurcation surfaces are completed.
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1.2 Previous Work

Most of the theoretical and experimenta1 results relating to the
characteristics of spin motion has been performed at the NASA/Langley
Research Center. The majority of this work has been experimental in
nature. Theoretical, or analytical, results have been hampered by two
factors: 1) the highly nonlinear nature of the spin regime, and 2) the
difficulty both of obtaining wind tunnel data which are relevant to spin
motions and of effectively correlating these data with the actual air-
craft's performance.

Klinar and Grantham (1959) used traditional linearized analysis tech-
niques to study flat, steady spin behavior. However, similar efforts done
previously have been limited to reliance on the limited conventional
static and forced oscillation aerodynamic data. These data do not always
represent adequately the highly complex flow phenomena associated with
flight in these stall/spin regions. Consequently, the wind-tunnel tech-
niques were expanded. Neihouse et al. (1957, 1960) report on the develop-
ment of a rotary balance mechanism by which a model is spun freely about
selected spin axes, over wide ranges of angle-of-attack. They also dis-
covered that differences between the model results and those of the air-
craft became more pronounced with current high-speed designs. The dif-
ferences were felt to be due to such factors as possible aerodynamic
scale effects (or Reynolds number effects) and variations in testing
techniques between airplanes and free-spinning-tunnel models.

Analysis made by Scher and Anglin (1959) further determined that

different kinds of spins are entered depending upon whether the aircraft

!
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was initially in a trimmed, level flight condition or spin entry was
achieved from an applied yaw rotation which simulates the spin-tunnel
mode. Using BACTM on our aircraft F model (Chapter III), we obtain
similar results. Their results again emphasize the importance of Reynolds
number effects as well as tunnel test techniques. More recently, Bihrle
(1974, 1976) corroborates the large effect of Reynolds number on spin
aerodynamic characteristics. In addition, he recognizes the role of
gravity in spin behavior and proposes scaling the models so that the Froude
number (a dimensionless quantity relating the relative effects of aero-
dynamic and gravitational forces) remains unchanged. Using unpowered
models, Bihrle (1976) also shows that the type of subsequent spin motion
is highly sensitive to the aircraft's initial condition (attitude, control
setting, attitude rates, etc.); and that spin motions which ensue

are highly sensitive to the sequencing and timing of the pro-spin control
actions. He also found that changes in inertias, side force coefficients,
and initial roll angle do not significantly influence developed spin;

but that the pitch damping coefficient and center of mass location is
important.

As both Bihrle (1976) and Anglin (1977) mention, it is necessary to
combine the different types of aero data in order to have a reasonable
model. In most instances, rotary balance data has limitations because
it is evaluated at relatively few control settings, and is very un-
reliable for angle-of-attack less than about 50°. In other analytic
results, Anglin and Scher (1964) not only use extensively both the con-

ventional and rotary balance data to study fairly steady developed spins

o TR
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and recoveries, but also define and use a non-dimensional spin-energy
factor (Eq. 3.2.48 in Chapter III of this report) to indicate the relative
difficulty of spin recovery. This factor is seen to be related to the
antispin yawing moment coefficient. Further, they found that the

antispin rolling-moment coefficient depends both on this energy factor

and upon the moment of inertia about the longitudinal axis.

Prior to, and concurrently with, the analytic efforts briefly ref-
erenced above has been an extensive program of experimental flight tests
and evaluations conducted by several government agencies and the military
branches. These results are generally restricted to the particular air-
craft being studied, and are typically aimed at developing recovery tech-
niques and avoiding spin entry. Rutan et al. (1970), Sallada et al. (1967),
Savidge (1970), Glenzer (1970), Carlson (1970), Krings and Weber (1970)
and Shaw and Shields (1970) all report on the results of spin-oriented
flight test experience.

Anglin (1977) reports that much remains to be done in terms of
providing an aero data base for spin regimes which will be sufficiently
accurate to enable adequate simulator prediction of actual aircraft
response. As we have also found (Chapter IIl), he describes a large
region in the yaw rate - angle-of-attack plane, located between the
low angle-of-attack and developed flat spin regions, in which neither
the conventional aerodynamics nor the more recent rotary-balance aero-
dynamics alone is adequate to describe the post-stall gyrations, spin
entry and oscillatory spin motions which characterize this region. Further

work s needed, he concludes, on understanding the behavior in this région;
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and this requires the development of an aerodynamic model which incor-
porates features of both the conventional and rotary aerodynamics.

Other recent research worthy of note includes work by Young (1974),
who used a steepest descent optimization technique to develop control
histories for spin recovery. Adams (1972) showed that several spin modes
and types are possible using representative aircraft models, and Moore
et al. (1971) show that use of a fixed-base simulator can give results
sufficiently realistic for studying stall/spin characteristics of air-
craft.

The previous work described above has supplied us with much of the
insight and direction needed to adapt BACTM to spin analysis probiems,
and to clearly outline areas in which BACTM may be utilized to investigate
these problems. In the following chapters, particularly Chapter III,
it will be seen that our results are in general agreement with the above;
and, further, that BACTM has added fresh insight into many of these problems
and possesses the capability to enhance even more our understanding of

spin phenomena.
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Summary of Significant Results

The significant milestones achieved on this project are given below:

Application of BACTM to a six DOF aircraft model, with comprehensive
aero data (aircraft F).

Development of simulation model for analyzing spin behavior.

Study of the characteristics of spin motion, and of currently used
control procedures to simulate spin entry and effect spin recovery.
Representation of tabular aero data in analytical form by means of
cubic and bi-cubic spline functions.

Expansion and generalization of methodology for generating the
equilibrium and bifurcation surfaces of BACTM. Reliance on para-
metric continuation methods derived from work of Davidenko (1953).
Development of continuation methodology, based on work of Rhein-
boldt (1977) and Keller (1977), which can compute all branches
passing through a "bifurcation point."

Generation of equilibrium curves for aircraft F in flat spin, in-
termediate spin (angle-of-attack about 75°) and stall departure

flight regimes.

Time history simulation runs of the aircraft F model to

verify some of the equilibrium results; and to begin an analysis of
the dynamics of spin entry and recovery from developed, flat spin.
Development of an accurate and efficient means of computing numerical

derivatives, using splines.
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e Demonstration that flat developed spin motions, in which angle-of-
attack is high and pitch angle is low, may be approximated on a first-
cut basis by assuming negligible gravity.

e Observation that changing the value of V by about 30% has a more
significant impact on the shape of the equilibrium curves than does
neglecting gravity.

e Observation that a developed flat spin for aircraft F is featured
by an extremely tight spiral, whose diameter decreases as the (pro-
spin) rudder setting gets more extreme, and which drifts slightly,
due to nonsymmetric lateral aerodynamics at high a. The spin
velocity, then, is almost entirely vertical, and the spin rotation
produces about 0.5 g's acceleration.

e Demonstration that a high-o 1imit cycle condition (steep, oscillatory
spin) is reached both by a stall-departure maneuver starting from
trim conditions, and by a spin recovery maneuver starting from the
flat spin equilibrium conditions. The 1imit cycle family provides
the 1ink between the high-o equilibrium states and the trim equilibrium
states. The recovery from this high o 1imit cycle condition by a
fixed change in control settings is possible, since the stability of
the 1imit cycle varies greatly over the physical range of the aero-

surface control movements.
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1.4 Organization of the Report

The report is organized into two main chapters, II and III, and
a supporting chapter, IV. Chapter II contains a discussion of the -techniques
by which BACTM was modified to enable the study of the spin behavior of
aircraft; also included in this chapter is material on chaotic motion
and strange attractors. Chapter 11l describes the use of BACTM to
analyze a particular aircraft model, Aircraft F, in all high-a regimes,
including spin. There is extensive discussion of Aircraft F's behavior
in terms of equilibrium surfaces and time history simulations. Chapter IV
briefly discusses other topics of interest, including spectral analysis of
chaotic motions and a preliminary look at using BACTM to synthesize a
simple command augmentation system. Conclusions and recommendations are
stated in Chapter V, and a Tist of symbols and nomenclature is includea

in Appendix A.
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CHAPTER I1I

Further Developments of Bifurcation Analysis and
Catastrophe Thoery Methodology (BACTM)

This chapter describes in detail the numerical algorithms used for
computing equilibrium and bifurcation surfaces for a general nonlinear
dynamic model of an aircraft under stall and spin conditions. Notation

for the symbols presented in this chapter is given in Appendix A.

2.1 A General Computational Procedure Based on "Continuation" Methods

Continuation methods refer to those numerical techniques which "con-
tinue" a solution line, or locus, from some point in the state-parameter
space where the solution is known. That is, suppose the solution to the

nonlinear algebraic system
f(x,d) =0 (2.1.1)

is desired. In this equation, f and x are each vectors of dimension n

(a more concise, mathematical way of saying this is f.xe Rn; which means

that f and x are elements of the Euclidean n-space of real numbers, that

is, they are n-dimensional). Also, § in this equation is a scalar, and

has a special role as the continuation parameter. The idea behind the
continuation methods is that we somehow know all solutions x satisfying
(2.1.1), for a given § = 60. These methods then supply a means of explicitly
varying g from 8 to some desired value, 61, where analytic or numerical

solutions are difficult to obtain. As an example, suppose we wish to know
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3 2

all values of x satisfying f(x,8)=x"+2ax“+bx+8=0 at any given

value for 6. It is clear that at §=0, we have three solutions,

x=(0, -a+v/az-b). This, then, is a natural starting point for continuing
the solution to some nonzero value of §. Note in this example that a and

b are also parameters, but that they remain fixed in value for the entire
process.

Continuation methods have been applied to several varieties of prob-
lems which are typically multi-dimensional., nonlinear and possessing no
"analytic" solution, i.e., a solution which can be explicitly derived.
Problems which have been solved using continuation methods include certain
kinds of two-point boundary value problems and boundary layer problems
(including singular perturbation problems), in addition to the algebraic
problem defined by (2.1.1).

The type of problem of interest here is that of solving a system of

nonlinear algebraic equations of the form (2.1.1). In our applications,
§ e {sa,6e,qr}, (2.1.2)

the set of aerosurface controls--aileron, elevator, and rudder, respectively.

Given that some solution point 50(60) has been found (such a solution

by definition satisfies (2.1.1)), the point 50 is called Cl-regular if the
Jacobian
of . (x,6) oo
Fé 1= (2.1.3)
8xj

an nxn matrix, is nonsingular (invertible). Otherwise, it is a singular

[ —— C e e - ,4.,..__.:1_, S — o A e

o e



— ems B N S A @ 2o

T —

S - ey e i =
e e————r AR e o 1 e s s - e @ ol e e mwmte = e T

17

point. The notation C1 refers to te continuity of f(x) and all of its

first derivatives.

The solution to (2.1.1) at 50 is "continued" through other solution

points by varying 6 over some range of values. For any regular point

(50,60)6 R x Rl, the implicit function theorem ensures the existence of a

unique regular solution to (2.1.1) through this point. The notation
R" x R! means that the (n+1)-space to be considered is comprised of two

1 for the scalar

particular subspaces: R" for the state variables x, and R
continuation parameter. Continuation solution algorithms generally fall
into one of two different conceptual classes. The first class was initially
investigated and developed by Lahaye (1934, 1948), and the second approach
is usually attributed to Davidenko (Rall, 1968). Davidenko's approach is
often called continuation-by-differentiation, and that of Lahaye belongs

to the class of iterative continuation techniques. The Davidenko approach
consists in the application of some suitable discrete-variable method to
solve

0, seD, x(89) =10 (2.1.4)

df CX) of
@ \@w/t s

where D is the set of admissible parameters, e.g., if §=8e, then D=[-25,10]
for aircraft F. Eq. (2.1.4) says that § is to be varied in a way that
ensures (2.1.1) being always true. A problem with this approach, es-
pecially where n is large, is the necessity for evaluating at each point

the matrix F and the (nx 1)-vector

fo 8 (:_:l) (2.1.5)
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and this is usually very costly. If we try to reduce the order of the
system model to offset this difficulty, there may arise fatal accuracy
problems. On the other hand, Lahaye's iterative continuation approach
uses a locally convergent iterative method (of a Néwton-Raphson nature)
to solve (2.1.1), the original equation, at an increasing (or decreasing)
sequence {dk} of parameter values in D. In its basic form the method
starts at the known solution 50 and selects steps (6k+1' ék) such

that the last ijterate at Gk is an acceptable starting point for the itera-
tion at 6k+1' At each point, (2.1.1) is satisfied to within some € > 0,
where ekzllka. (See Appendix A for notation.)

The recent trend has been to combine the two ideas by using a feasible,
low-order method of solving (2.1.4) as a predictor and then following it
with a locally convergent iterative process for (2.1.1) as a corrector.

In particular, Klopfenstein (1961), Keller (1977), Rheinboldt (1977) and
Kubicek (1976) have developed versions which seem particularly suited to
the task at hand: the computation of equilibrium and bifurcation surfaces
for high-performance aircraft operating in high-a (nonlirear) flight re-
gimes. One of the major results described in this report is the modifica-
tion and adaptation of the relevant techniques presented in the above
references to two principal aspects of BACTM analysis, the computation

of equilibrium surfaces and bifurcation surfaces. The utilization of these
algorithms, and the refinements needed to handle certain situations, is
discussed below.

More recently, we have found that other methods may be better suited to

the particular application of computing bifurcation surfaces for aircraft

in the spin regime. This is because of both the dimensionality of this

e . - e W — S -
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system (increased due to gravity coupling) and the highly nonlinear charac-
teristics of the motions in developed spin. Briefly, these methods in-
volve techniques which avoid the computation of the Jacobian (Ralston, 1975,
Ralston and Jennrich, 1978). A derivative-free algorithm as well as one-
dimensional search algorithms in the corrector phase of continuation, will
also be discussed below.

Consistent with the notation employed elsewhere in this report, the
equilibrium system of equations has the same form as (2.1.1), viz.:

f(x,8) = 0 (2.1.6)

where & € (6a,8e,6r) and the dimension and form of the state x and the function
(mapping) f depend, in general, on whether one is in a spin or a non-spin
flight regime. See Section 3.2 and Mehra, Kessel, Carroll (1977), respec-
tively, for the distinctions. Eqg. (2.1.6) is derived from the aircraft

dynamic equations, which are concisely expressed as
x = f(x,6) (2.1.7)

where

o
[ =

(8a,8e,dr) (2.1.8)

(Hence, the mathematical definition of dynamic equilibrium is §= 0. For
n
4% = 0, for all n>0)

n
dt
The bifurcation system of equations has the same form, but an addi-

a stable equilibrium,

tional equation is added, to specify the requirement that the Jacobian
matrix F be singular at a bifurcation point. This is in addition to the

equitibrium requirement (2.1.6). We denote the resulting set of equations as
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g(y»8;) = 0 (2.1.9)

Like (2.1.6), (2.1.9) has the form of Eq. (2.1.1), and can thus be solved
by the continuation methods presented here. Furthermore, (2.1.9) is re-

Tated to (2.1.6) as follows:

X
Y ={: ] . (2.1.10a)
83

where
53’51 € (sa,se,8r), i # j; (2.1.10b)
and
f(x56.)
_ ==Y
9(1361) = A (2.1.116)
where
A @ det (F) (2.1.11b)

The solution of (2.1.9) yields a curve Gj(si), Gk fixed, in the control

space called a bifurcation surface. We are at tiberty to choose any two

Gi from the control set (5a,de,6r), but the third one, Gk, remains fixed
in value. Also, while the bifurcation surface is the particular curve

5j vs. §;, solution of (2.1.9) clearly supplies values for x as well, at
each point (Gi,sj) on the bifurcation surface. The system (2.1.9) is
essentially the equilibrium system (2.1.6) augmented by the constraint
A=0. (This is discussed in more detail below.) The equilibrium system
dimensionality is consequently increased by one in the bifurcation system,

so that an extra dependent variable, Gje (sa,8e,8r), j#i, may be added.

o
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The bifurcation surfaces are consequently more difficult to generate for
two reasons:

i) the size of the system is (n+l), where n is the size of the
equilibrium system. For the non-spin system considered here,
n=5, and for the spin system, n=8.*

ii) a much worse problem than (i) is posed by the presence of the
constraint on A, the determinant of the Jacobian of f. Even
in the n=5 case, it is wholly impractical to expand A analyti-
cally, so that evaluating the Jacobian of g, (2.1.1la), of
necessity requires using a numerical differentiation algorithm

on at least the (n+1)th row of
39,
b, = |21

6% g, {aij (2.1.12)

Except for extra core and extra care, problem (i) above is relatively
straightforward to surmount. The second problem, on the other hand, re-
quires extreme caution and precision, in addition to more complicated
algorithms. Consequently, when using continuation-based methods re-
quiring the first derivative, the core and run-time costs are high.

We shall now discuss in more detail a particular predictor-corrector

continuation algorithm developed by Kubicek (1976).

2.1.1 Continuation Method of Kubicek (1976)

Kubicek's method employs the basic method of Davidenko (Rall, 1968,

*There is a dimensionality-flexibility tradeoff for the spin system, which
centers around the velocity variable, V. V can be solved for explicitly
in terms of the remaining 7 variables and the controls, but at some cost
in flexibility and adaptation to several aircraft models. We have opted
more for flexibility in this regard, and so n=8 for spin, not 7.

v o) A——————-_ .. ..
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Ficken, 1951, Davidenko, 1953) to solve (2.1.4), in combination with the
Newton method and Adams integration formulas. This particular method
has become the basis for our continuation algorithms, since it

was found to be capable of solving accurately and efficiently a wide
variety of nonlinear algebraic equations required by the BACTM approach
to high-performance aircraft analysis.

Kubicek has introduced certain modifications to the basic continuation
methods of Davidenko which make the solution of Eq. (2.1.1) more feasible
on digital computers. In essence, this approach represents a subset of
the methodology assembled by Keller (1977), Rheinboldt (1977), et al.;
however, certain features of the Kubicek algorithm are worth detailing.

Basically, an arclength parameter is introduced to evaluate the de-
pendence x(8), which is assumed to be continuously smooth in the (n+1)-
dimensional space (x,8). (This assumption is not necessary in the method
of Keller, which can handle the singularities, or bifurcations points.)

+ . .
ntl and singular in

Quite often, x(§) is smooth in the augmented space R
R". In such an instance, the system (2.1.4) cannot be solved, because the
(nxn) Jacobian F, Eq. (2.1.3), is non-invertible, i.e., singular. This
happens at 1imit points, Fig. 2.1. At such points, § is no longer mono-
tonically increasing or decreasing, and F is singular. However, a properly-
selected arclength parameter will remain monotonic at 1imit points; this
enables smooth continuation around 1imit points, as shown below.

By introducing the arclength parameter s, so that (x,8) become

[x(s),6(s)], the system (2.1.4) "inflates" to

. of |
Fx + =8 =0 (2.1.13)
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Timit points

bifurcation
point \~___ﬂ-———"/4>

Figure 2.1

Bifurcation and Limit Points
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and we choose initially a standard Euclidean arclength relationship

dx, \2 dx.\2 2
_1 M A (.._n) (g_é.) = N 2
(ds )'* *\3s / *\@ X ° e

+ inz +82 =1 (2.1.18)
where
dx
oA_
XT @
(2.1.15)
5 0ds
§ ds

Eq. (2.1.14) is comparable to the more complicated pseudoarclength normali-
zations introduced by Keller (described in the next section), which are
useful in the algorithms which solve for the branches at bifurcation
points*, shown in Fig. 2.1. Kubicek generalizes the solution procedure

by generating a nonsingular (nxn) matrix of the form

T
oo h
a -
Iy = %) (2.1.16)
of of  of of
Laxl 9 o o sy axk_l’ axk+lo L A ) axn+1J

*Singular points are points (x,8) where the Jacobian matrix F is non-invertible,
Both 1imit and bifurcation points are singular points.

or singular.

———
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In this definition, we have set Xp+1 ™ § for consistency. Note that Fk

1
is nxn square because one column, af/axk, is eliminated. Since ke (1,n+1),
there are n+l possible Tk to analyze.

We shall not go into the full detail here (Keller, 1977, has such
detail), but will mention that at least one nonsingular Tk does exist at
a limit point, thereby allowing continuation through that point. This
is a consequence of the fact that, while F is singular, it has rank n-1
at a limit point. Thus, the corank, equal to (n-rank), is 1. At a bi-
furcation point, the corank exceeds 1, and there is no invertible Fk. It
is possible, therefore, to associate the corank of F at singular points

with the number of equilibrium branches intersecting at that point. At

a simple bifurcation point, for example, F has corank 2 and two branches

— ems G GEE BN W G R o

intersect (Fig. 2.1). At regular points, F is nonsingular; thus corank

4

of F is zero, but a (smooth) branch also passes through. If an Xy o

. 1gkgntl, can be found so that its corresponding T is regular, then

the system (2.1.13) can be recast as follows:

i
! . (dx-) (af )

f=r |t +{= Jx, =0 (2.1.17)
; k ds itk axk k

1gjsn+l

In this equation, the vector (dxj/ds) is n-dimensional, as the ktb

element is not used, and xnﬂé §. EQ. (2.1.17) can then be solved for n

of the n+l parametric derivatives:

dx of
IS AR
(d_s-l)jfk = -Fk (a—xk) xk (2.1.18)

1gign+l
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or, equivalently,

dx, dx
ko
G T B e e 4= L2een(ke1),(k#1), ., (n0]) (2.1.19)

The final parametric derivative is determined by using (2.1.19) in Eq. (2.1.14):

ntl

)2 = (1 2)1

(%) ( + jg; B ) (2.1.20)
J#k

In Eq. (2.1.20), the sign ambiguity is resolved by the orientation of the
arclength parameter s along the curve. This may be done somewhat arbi-
trarily at the solution starting point, (50,50), which must be supplied (or
obtained from a Newton-type iteration). This solution branch will then
emanate in one direction from the starting point, and can be made to emanate

in the other direction by selecting the other sign.

Thus, the method of Kubicek is more "robust” than that of Klopfen-
stein (1961) in that the latter retains the special role of § as the
continuation parameter--Klopfenstein inverts rn+1, which is actually F,
at every point rather than the more general Fk' Numerical difficulties
are more likely to be avoided by Kubicek's algorithm, which at each step
utilizes the "best" continuation parameter x,. The value of the
subscript k is determined by means of Gaussian elimination using con-
trolled pivoting. That is, at any point in the reduction process for in-
verting Fk’ the current pivot element chosen from Fk, Yije has the largest
. is chosen, all remaining

J
itb row and jtb column elements of Fk are eliminated as candidate elements

magnitude of all candidate elements. Once Y5
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for selection of subsequent pivot elements. Then, Yij is used to reduce
all other elements in column j to zero by means of the so-called "elemen-

tary matrix operation"

{Row & of Fk} = 02°{Row i of Fk} + {Row 2 of Fk} (2.1.21)

where the scalar Py is adjusted so that (2.1.21) produces a zero for
element Yzj’ 2#1i. That is, to zero all elements of column j except the

it the right side of (2.1.21) becomes

pz'Yij + ng = Os

Py = ~Ye3/Vij (2.1.22)

The process continues in this manner, one column at a time. Eq. (2.1.22)
indicates the role of the pivot elements Yij in the matrix inversion
process. If at any step in the process no nonzero y.. can be found, the

i

matrix is singular.

The process just described is a Gaussian elemination procedure. The
pivoting is controlled in the Kubicek algorithm by allowing each column
in re to be selectively scaled. This allows the user to "bias" the
selection of a particular variable from (x,§) as the continuation parameter.
Typically, of course, the desired choice is &= X041 The scale parameter
for the column associated with Xn+1 is then some value less than 1., say
0.001, while those for the other columns may be kept at 1. This approach
has been developed by Deist and Sefor (1967).

The complete procedure involves performing the elimination process

(2.1.21) n times on the n-by-(n+l) array
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s of of
ey [P (2.1.23)

In so doing, n columns are selected for T under the selection criterion
that Yij have the largest magnitude of the candidate elements. Thjs
insures that the "most nonsingular® Fk is selected of the (n+1) possi-
bilities. The one unselected column in this process becomes column k.
When the resulting reduced I matrix is deprived of this column, Fk re-
sults. Tk is T of (2.1.16), but operated on several times by the ele-
mentary matrix operations (2.1.21). Fk has the property that there is
exactly one nonzero element (indicated by x) in each of its n rows and

columns, e.q.,

r
0o 0 x .. 0 0]
0 0 0 x 0
S (2.1.24)
x 0 0 0 0
0O 0 O 0 x
0 x 0 0 o]

Fx+f, X =0 (2.1.25)

where ?x is the ktb column of the reduced T matrix.
k
Upon expansion, (2.1.25) has the form of (2.1.19), so that the Bj

from the latter expression are readily extracted, and the n ii==dxi/ds

——— - y e
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are found from (2.1.19), i#k. Also, (2.1.20) produces x,. Given the
n+l ii elements, the Newton step size Ax is obtained for the full (n+l1)-
dimension x. Note that Axk= 0 in this procedure. What the above process
has effectively done is compute a Newton iteration step, based on the

standard multi-dimensional Newton-Raphson formula

axP) = ey (2.1.26)

where p is the iteration counter (5(0) is given), and x includes the
original x, plus 3.

To summarize, we have solved (2.1.17) for the k;®dx,/ds, j¢k, lgjgn+l;
i.e., we have found the Bj in (2.1.19). Using Eq. (2.1.20), which represents
the standard Euclidean arclength relationship utilized by Klopfenstein and
Kubicek, all (n+1) quantities (8,3) are determined. These derivatives are
then used by the Kubicek algorithm to predict the next point on the curve.
This is done by using Adams-Bashforth integration formulae. The logic of
Kubicek and Deist and Sefor which regards the parameter § as interchangeable
with any state element X; at each point makes this algorithm very robust
in terms of singularities and numerical roundoff difficulties. This is
because the value k can change from point to point along the continuation
solution. After the Adams integration step (predictor step), the new
point (x,5), where all n+l quantities have changed, is the next starting
point for the Newton iteration (corrector step) to the point again satis-
fying (2.1.6).

The Kubicek algorithm has been discussed in considerable detail be-

cause it plays a major role in the adaptation of BACTM to handle large
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order, complex systems. However, we have implemented other methods which,

although not used as much at this point, do exhibit promise in certain .
aspects. Ultimately, it is hoped to develop a unified, comprehensive and '
flexible package for BACTM which utilizes the most appropriate algorithm

for the task at hand. Some of the other algorithms which are currently

being developed will now be discussed.

2.1.2 Continuation Method of Davidenko (1953) and Numerical Differentiation

If Eq. (2.1.1) can be put in the form:

dx
a—6—= M(x’d) (2-1-27)

any number of numeric integration methods will be able to solve for a
complete branch of solutions once an initial solution is found. This
transformation is accomplished by differentiating Eq. (2.1.1) to obtain

(2.1.4) so that

()

When this equation can be solved, either an interpolatory integration

(2.1.28)
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method (such as Runge-Kutta) or a predictor-corrector method (such as
Euler-Newton or Adams-Bashforth) can be used to continue along a branch.
This is the essence of Davidenko's method, which has subsequently been
refined considerably.

The first task, then, is to solve for the partial derivative of f

with respect to any X; or 5§, since these comprise elements of rk' In

——
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the past we have solved for these derivatives analytically while setting
up the problem. However, this severely limits the range of problems which
may be solved and, moreover, makes the process of applying the technique
to a new problem extremely complicated.

As a result, we have implemented a numeric differentiation routine.
This routine is based on a cubic spline fit* to the function f(x,6),
evaluated at selected points y=(x,8), centered on Yo the point where the
actual derivative, 3f/dy = 3f/3(x,8) 8T is desired. To understand the
process more readily, consider the scalar case: x, f, §eR'. The goal,
then, is to numerically evaluate 3f/3x and 3f/38 at ¥o* (xo,éo). For

3f/3x, evaluate f at the five points

f((XO + pE),(SO), p = -2,’1,0,1,2 (2-1-29)

Note that we have f(xo,éo) at p=0. The increment size € is chosen so that

1 f(yq) - F(YII = 10 (2.1.30)

This choice of ¢ allows sufficient accuracy of the fit without introducing
serious numerical difficulty; ¢ must provide a large enough spread in Ay
so that the slope obtained is representative, yet not be so large as to
deteriorate precision. We then use each of the five y as knots for the
spline fit. The polynomial approximation resulting from this is analytic
at y,» by definition, so that evaluation of 3f/3x at y, is straightforward.

Similarly, for 3af/3s§ at Yor fix x at Xg» evaluate f at the five points

f(xq»(85+ pe)) (2.1.31)

*Curve-fitting using splines is discussed in detail in Section 3.2.1.
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and make a spline fit and evaluation as before.

The extension to x,fe R" follows immediately. For each af/axi,
make five evaluations of the vector f by varying X; only, keeping xj= xjo,
J#i, and 8= 60. Each of the fm are then spline-fitted, and this pro-

duces the set of vectors (afm/axi), for each X5 and 8.

2.1.3 Keller-Klopfenstein Continuation (Keller, 1977)

Limit points. Using the Davidenko method, all points along a solution
branch can be computed as lTong as the nxn matrix F can be inverted. If

F is singular with:

dim N(F) > 1 (2.1.32)

where N(+) denotes null space, special procedures must be used at such a
point. The null space dimension here is equivalent to the corank of F.
Adding a "normalization" equation and a new parameter to the system can

avoid this problem in some cases. Keller (1977) uses the normalization:
Ny £ 0xT(x - xq) + (1-8)8 (8-6.) - (s-5-) = 0 (2.1.33)
3 0= 20 0 0 0 o

where s is the arclength parameter, 0<6 <1, and x,, 8, and Sy are the
values at the initial point for the branch in question. The System now

becomes:

£
gly,s) @ fH) =0 (2.1.34)
N4(yss)

where:
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X
v = [' ] (2.1.35)
§

This system can be dealt with in the same manner as Eq. (2.1.1).
The normalization N3 is said to have better numerical properties near
bifurcation points. Keller proves that, using (2.1.33) as the normali-

zation equation, 3g/3y is nonsingular if and only if:

F is nonsingular (2.1.36)

or:
af/38 ¢ R(F), where R(-) denotes range space. (2.1.37)

Case (2.1.37) corresponds to a "limit point." At such a point (see Fig-
ure 2.1) two branches do not intersect, but dx/d§+«. In this case, solu-
tion of the augmented system (2.1.34) continues normally. The proof can
be developed by utilizing Gaussian elimination techniques. We shall dis-
cuss this and other aspects of Keller's method in more detail in later
reports.

For dealing with 1imit points alone, Keller's method is somewhat
cumbersome, particularly in the choice of N3 for an arclength relationship.
The method of Kubicek, discussed in Section 2.1.1, is quite adequate at
limit points, using the simpler normalization (2.1.14). However, the
Keller approach is more comprehensive, and can handle the computation of
equilibrium branches at bifurcation points. We shall now outline how this
is done, saving some of the detail for later reports.

Bifurcation points. If, at some point on a branch, neither condition
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(2.1.36) or (2.1.37) is satisfied, 3g/3y will be singular and continuation
of the augmented system will also fail. This is a "bifurcation" point,
where at least two branches cross. At such a point two steps must be
accomplished. First, the bifurcation must be skipped over so that con-
tinuation may proceed along the same branch. Second, a point on the other
branch must be found as an initial point for continuation along it.

Any predictor-corrector method can be used to skip over a bifurcation
point. This simply involves choosing an initial solution and step size
for a single prediction step for which the correction step will converge

to a solution past the bifurcation point.

Finding the second branch at the bifurcation point is more complicated.

To begin, consider a simple bifurcation point, at which two branches inter-
sect. Here, the rank of ' is n-1. T is an n-by-(n+l) matrix, recall.
Multiple bifurcation points have more than two branches intersecting at y*,
and the rank of T is less than n-1. By examining the nature of the
various terms in the power series expansion of f(x,8) near such a bifur-
cation point, y*, one realizes that the two branches emanating from y* lie
tangent at y* to a plane defined by the two eigenvectors associated with
the two zero eigenvalues of FTF, which is a square (n+l)-by-(n+1) matrix
of rank n-1. This matrix, then, has a corank of (n+1)-(n-1)=2; hence,
two zero eigenvalues. Once I is found, therefore, the plane is readily
determined, and all branches can be located by a search in this plane
for £=0 points. This search is done along an arc of fixed radius from
Y*, and sufficiently close to y*.

To summarize, the algorithm of Keller differs from that of Kubicek

in these significant areas:
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(i) The pseudo-arclength normalization of Keller is more compre-
hensive than the purely geometric relationship (2.1.14) employed by
Kubicek, and is capable of dealing with bifurcation points;

(ii) The Gaussian elimination procedure for selecting X, as con-
tinuation parameter at each point seems to be capable of effecting numerical
solutions more efficiently. Incorporating it into Keller's algorithm
could well enhance its usefulness.

(iii) A final distinction which has practical, if not theoretical,
significance, is the means by which one proceeds along the solution
branches. Both schemes utilize predictor-corrector algorithms, with some

form of Newton method as a corrector:

- -]
Xnew = %o1d ~ Tk I (2.1.38)

However, Kubicek uses the Adams-Bashforth explicit multistep method, with
variable order, to integrate (2.1.19) and (2.1.20), whereas Keller suggests
a modified Euler-Newton scheme, which is really a first-order Adams

algorithm. There is more flexibility in the more complete Adams method.

2.1.4 Applications of the Kubicek Continuation Algorithm

The algorithm works exceptionally well as coded for solving aircraft F
equilibrium surfaces, (2.1.6), both in spin and non-spin regimes. There
is consequently no need to discuss the algorithm per se with regard to
these surfaces. However, the computation of bifurcation surfaces of air-
craft F, defined by (2.1.9), did necessitate more care in setting up the

problem and, in the case of spin bifurcation surfaces, required in addition
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some modification to the algorithm itself. These points will now be

discussed in more detail.

2.1.4.1 Bifurcation Surfaces

Let x(8) represent an equilibrium solution to (2.1.6). It is obvious

that the variation of one element of § (§=(8a,8e,8r)) will generate an

equilibrium surface in the state-control space. A bifurcation point on

the equilibrium surface implies a change in structural stability for

control variations in the neighborhood of the bifurcation point. Points A

and B are bifurcation points in Figure 2.2, and the loci of their pro-

Jjection onto the control subspace is what we call a bifurcation locus.

1=h
L]
o

ot -
O 4-- - - -
\,

Figure 2.2
Equilibrium Surface

The set of bifurcation loci on a particular control subspace is called a

bifurcation surface. The locus is generated by varying any two of the

three controls, holding the third one fixed. It is obvious that the bi-
furcation points are a subset of the equilibrium points. The criterion

for an elementary bifurcation point* is

*An elementary bifurcation point has a zero eigenvalue. More general bi-
fgrcation points such as Hopf Bifurcation points have purely imaginary
eigenvalues. (See Mehra et al. (1977) for details.)
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of
s & det(F) = det > =0 (2.1.39)

(i.e., the Jacobian is singular). The difficulty at bifurcation points

arises from the fact that, if
f(x,6) =0 (2.1.6)

is true, then

Foer +—=0 (2.1.4)

when § is one of the controls selected as a parameter. (See Section 2.1.)
It is seen from Fig. 2.2 that dx/d§ is the slope of the f=0 locus for

values of x and ¢ on that locus. Also, points A and B are characterized

by the fact that dx/d§, the slope, is infinite. Hence, the continuation

solution

dx -1f3f
d—6= -F .5.6_ . (2.1.40)

breaks down. This is equivalent to saying that the inverse of the
Jacobian F does not exist, i.e., Eq. (2.1.39) holds.

Thus, unadulterated continuation methods break down at such points,
as these methods solve for x(8) by integration of (2.1.40). Kubicek's
algorithm avoids this by introducing an arclength parameter and by aug-
menting the Jacobian with an extra column representing the parameter, and
eliminating (via Gaussfan reduction) that column which leaves the most nonsin-

gular square matrix (thfs amounts to interchanging the parameter 61 with
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an Xk as necessary; Xk then becomes the parameter and continuation via an
equation like (2.1.40) or (2.1.18) remains valid).
To summarize, Eqs. (2.1.6), evaluated for some starting value 80’ and
(2.1.40), which continues the solution from go, generate equilibrium
surfaces. Bifurcation surfaces--represented by points a and b in the con-
trol-space in Figure 2.2 --are generated in a similar way, with the basic
equilibrium system being enhanced by one dimension (representing the con-
straint (2.1.39)). Thus, the bifurcation system is indeed given by (2.1.9).
For equilibrium surfaces, one of the controls is selected as a parameter,
leaving the other two fixed. For bifurcation surfaces, one of the controls is
still a parameter, but one of the remaining two controls becomes a state variable,
because of the introduction of 4 in g (see (2.1.11a)). The bifurcation

surfaces then are generated by a system similar to (2.1.13), viz.:

.7} dy ag \ds
[ | - = -
__.i I_dS + (.._a i)“ds 0 (2.1.41)

g=Gy+g 8 =0 (2.1.42)

or, in compact form,

As outlined in Sec. 2.1.1, Eq. (2.1.42) is solved for the (n+l) derivatives*
i (the (n+1)§b element of y is 5j, as defined in (2.1.10a)), as functions
of the scalar 6. This latter derivative is then determined from the arc-

length normalization relationship

*In the spin flight regime, n=8. Thus, the equilibrium system (2.1.6) is
8th order, the bifurcation system (2.1.9) is 9th order, and the matrix I
of Sec. 2.1.2 is a (9x 10) array.
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AR O (2.1.43)

See Sec. 2.1.1 for details.

2.1.4.2 Non-spin bifurcation considerations

In the non-spin case, n=5 (gravity effects are neglected and V is
assumed constant). However, even though this system is considerably smaller
than the spin system (for which n=8), the I array is of size 6x7. Fur-

thermore, because
A = det(F) {2.1.11b)

represents the (n+1)Eb element of g (hence row (n+1) of

6= |l )
= 3—)/—5 ), (2.1.12)

there are serious computational problems to consider.

These problems center on the computation of G and the (n+1)-by-(n+2) array

28

which is often more difficult than inverting the submatrix of Ty For

example, the bottom row of T, (2.1.44), is given by

T
.9
F(n+1),. -(3A<¥’515) (2-1.45)

where y is defined by (2.1.10a). It is of practical necessity to com-

pute at least this row using a numerical differentiation algorithm.
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Even for n=5, deriving the analytic expression for + is excessively tabor-
jous, not to mention all of its partials; needless to say, there is no '
point in speculating about the n=8 (spin) case.
Thus, the last row of I' in either the spin or the non-spin case is
determined by numerical differentiation. The first column element in

this row, Y( is given by 3a/3p. As described in Sec. 2.1.2, the

n+1),1
numerical differentiation of this term involves five evaluations of A(p),
with all other variables fixed. For each state, and the two selected
controls, this must be done; altogether seven times for each of the last
row elements of T', in the non-spin case. Thus, 35 evaluations of 2 are
needed each time an evaluation of T' is made. There can be several
evaluations of T made for each point on the continuation solution, due

to the iterative nature of the Newton-corrector steps. Every evaluation
of A requires full evaluation of the matrix F. It is possible to do this
using numerical differentiation, but there is obviously a tremendous
saving in time to be had if the terms in F can be analytically derived,
as well as all other elements of I' (F is a submatrix of T) for which

this is feasible.

Thus, the above strategy was adopted for computing I, both in the spin
and non-spin cases; i.e., use analytic expressions for the elements yij
as- far as possible, using numerical differentiation only for the last
row of I, (2.1.45). This modification provided the opportunity to compare
the precision of the numerical differentiation results with the “exact"

expressions, and the numerical adequacy of the former was verified.

Another modification made to run bifurcation solutions was to evaluate
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the aerodynamic coefficients only once for every point actually accepted
as a solution point, and not every time I', or even f, is evaluated. This
results in considerable time savings, as the aero data for aircraft F
requires interpolation routines.

The modifications discussed above, when applied to the non-spin bi-
furcation system, can generate almost a solution point per CPU second on
the CDC 6400, an improvement by about a factor of 50 on the unmodified
system.

2.1.4.3 Spin Bifurcation Surfaces

The spin bifurcation system worsens the "curse of dimensionality."
In this regard, incorporating an algebraic soluti = for V, which reduces
the basic system dimension from 8 to 7, does not help very much computa-
tionally. This is because all of the partials fuvolving V in T would
have to be carried along by the chain differer .iation rule. V could be
specified to be constant, but it is as yet unclear whether this action
would obscure transition dynamics in the pos® -stall departure and spin
entry flight regimes.

With this background, the n=8 spin system was incorporated into the
BACTM bifurcation package, modified as described above for the smaller,
non-spin system. Numerical difficulties were encountered immediately,
which centered around the Newton-Raphson iteration algorithm.* More
specifically, the problem lies with the Newton corrector step, computed

by the relation

ay%) = (D) LRy L gl (K, (2.1.46)

*These difficulties were present as well when a scaled velocity, né‘V/V
was introduced. Vsca1e was given a value which put n in the range

of values of the other variables, all of which are in radian units.

scale
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where
,z (paq,Y‘,OL,B,V,e,¢,5j)T é (XaGJ)T (21-10&)
f(x,8;)
g glyss;) = < ! > (2.1.11a)
A
and
4 ofy
A = det P = det (F) (2.1.11b)
X5

(In the continuation process employed by BACTM, the Newton-Raphson al-
gorithm itself is considered a Corrector, as it refines the approximation
g=~0 iteratively. The Prediction step is made by the Adams-Bashforth
multistep method.) The algorithm above works quite well for all of the
(k)

BACTM systems except the spin bifurcation system. In this case, if ¢

is defined as

E(k) 4 llg(z(k),éi)ll (2.1.47)

where X(k) is the ktb Newton iterate at a (predicted) point designated by

(Gi,éj); then, it typically happens that

e(k+1) > e(k) (2.1.48)

for the spin system. Worse, this happens over a range of k values, so
that the sequence {Ax(k)} becomes "unstable" with respect to the itera-

tion. If a solution g=0 is found under these conditions, it invariably
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is at a point far removed from the regime of interest.
By the nature of the Newton algorithm, assuming ge Cl, the class of
functions continuous in all first derivatives, there exists a region R

centered on y(k) such that

ex < ek (2.1.49)
where the stepsize producing €* relates to Ay(k) by
py* = oK) ay(K) (2.1.50)

©

where p(k)e (0,1] is a Euclidean metric between two points in R. Basically,
this says that if one cuts back sufficiently on the step size as given by
Eq. (2.1.46), then one will eventually find a step size (2.1.50) for which
(2.1.49) holds, if g is "sufficiently smooth."*

The above represents an aspect of one general approach to the basic
goal of ensuring a decreasing sequence {s(k)}; that is, the one-dimensional
search algorithm. These methods accept the minimizing direction as com-
puted by (2.1.46), even though it uses only first order information.

Then, a scalar one-dimensional search is made along this direction for a
point, y*, which is "minimizing." Several algorithms exist, and two

(k)

have been implemented. The first of these merely halves Ay'"’, evaluates

g at that point, compares its norm to e(k), and halves the stepsize

12. The latter con-

e¢~ain, continuing until either e* < s(k) or |layl] < 10”
dition indicates either that g is not continuous at y(k), or that the
first order information at that point is inadequate. This algorithm

was successful in some regions, but less so in others, even with

*This is easy to see geometrically if one constructs a scalar system from
Eq. (2.1.46).

. . o —— — R e et e e e+ —————— < L




44

modifications such as permitting (2.1.48) up to three consecutive times.
Another one-dimensional algorithm which was implemented involves

(k)

considering only the segment along the direction Ay between the points

x(k) and (x(k)+AX(k)). If one defines a scalar arclength parameter o

such that y(o=0) = y(K) and y(o= 1) = (K1)

, then it is possible to. con-
struct a cubic polynomial in o using only previously computed quantities:
g(x(k)), G(X(k)) and g(x(k+1)). The cubic is then assumed to approximate
the function ¢ in this interval, and its minimum value should be close

to the function minimum. This method has fared Tittle better than the
first one mentioned, but is has not been tested completely. A combination
of the above two algorithms is also being considered.

Other algorithms under consideration, but as yet not implemented, in-
clude one-dimensional search and a least sgquares method based on step-
wise regression. The latter is useful especially if G is nearly singular.
If singularity problems arise, the method of stepwise regression may be
employed, as it eliminates variables so that g is better parameterized.
The remaining variables are those which "do the most good" in reducing
€, Or e = Hgllz. Stepwise regression can deal with nonlinear formula-
tions and bounded spaces.

Another general approach which shows great promise, but is yet to
be tested, involves derivative-free algorithms. In these, the Newton
approach is forsaken entirely in favor of methods which rely only on the
evaluation of g(y). By the proper sequence of (n+l) such evaluations,

a secant plane in n-space may be constructed. At each iteration, the use

of this plane along with the "optimality criterion"--i.e., minimizing

..,,_k-_.._,___..._x_,A e e m Ay e ——— —— ——— B - -
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the distance between a point in this plane and the desired point--provides
information for replacing one of the (n+l) y-points with a new point.
Then, the new set of (n+l) points defines a new secant plane which im-

proves the optimality criterion. In a convergent sequence, the secant

_ plane iterates ir the 1imit to the tangent plant whichcontacts the function

g at y*, such that g(y*) =0, the desired solution. Ralston (1975) and
Ralston and Jennrich (1978) discuss a specific derivative-free algorithm
(D.U.D.--doesn't use derivatives) which holds some promise for our

applications.
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CHAPTER III

BACTM Applied to the Study of Aircraft F Stall-Spin Behavior

This chapter describes in detail the aircraft model, designated
Aircraft F, which is used in this report for the study of high-a, post-
stall and spin motions. Also discussed in detail are descriptions of
stall and spin behavior; the nature of spin and stall; the dynamic equa-
tions which describe the above motions; the aerodynamic data for aircraft
F; and BACTM results for aircraft F in spin entry. stalling maneuvers,
wing rock, post-stall gyrations, developed spin motion, and spin recovery.

An explanation of the spin behavior of aircraft F completes the chapter.

3.1 Nature of Aircraft Stall and Spin Behavior

In this section a brief overview will be presented to provide some
insight into the physical phenomena of aircraft stall and spin. Briefly,
an aircraft encounters a stall condition when loss of 1ift occurs due to
excessive buildup of angle-of-attack (a). High performance aircraft are
particularly susceptible to this phenomenon if only because their design
goal is to operate near the extremes of the flight envelope in accom-
plishing mission objectives. Stall and spin are related because post-
stall behavior can include departure into spin conditions. Since, as
will be shown in this report, spin motions can be stable equilibria, it
is important to understand enough about spin phenomena to be able to
effect recovery control sequences which transfer the aircraft state from

the domain of attraction of spin equilibrium points into the domain of
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attraction of nonspin stable equilibrium points.

3.1.1 Nature and Characteristics of Spin

For most aircraft, high angle-of-attack departures from stall quite
often proceed to entry into one of several spin modes. Whether a spin
condition is achieved, and if so, which one, depends to a great extent
on the particular aircraft configuration and control settings, as well as
the flight condition. 1In gereral, the spin modes are characterized by
the incidence angle (angle of attack), a. A typical classification of

"erect" spin modes has five categories (Rutan, et al. (1970)):

1) Steep - Smooth
2) Steep - Mild Oscillation

4) High-a - Highly oscillatory

(
(2)
(3) Steep - Oscillatory
(4)
(5) Flat

For certain configurations, "inverted" spin is possible, but this
particular phenomenon has not been investigated in this report. Other
investigators, e.g., Adams (1972) and Young (1974), classify erect spin as
steep, intermediate, or flat, and oscillatory or steady. At any rate,
the higher the equilibrium angle of attack is, the flatter the spin.
Typical values of a during a fully developed spin, derived from a study
of F-4 behavior (Adams 1972), are o = 80°- 85° for a flat spin, =272°,73°
for an intermediate spin, and ~45°- 60° for a steep spin.

There are basic characteristics of spin motion common to all of the
spin modes defined aoove:

(1) The angle of attack remains greater than the stall angle

of attack (“STALL);
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(ii1)  the center-of-mass follows a helical path, with the net '
velocity being almost totally vertical and constant sink rate;
(1i1) the aircraft attitude changes at a steady rate (of magni-
tude w), and the axis of rotation is almost totally vertical.

In the development of the equations for analyzing developed, or equilibrium,
spin, the above characteristics will be “incorporated as dynamic constraints.
Other assumptions, such as constant speed (V), will be discussed later.
The visual cue for a spin is excessive and continuous yaw rate.

The fully-developed, or equilibrium, spin is often achieved after
only a few rotations. Once the spin is established, the trajectory is
essentially vertical. In this situation, equilibrium is a result of a
balance of the aerodynamic (decomposed into 1ift and drag), gravity and
the centrifugal forces (the latter arising from the helical motion).
The drag vector opposes the velocity, and so is largely vertical; hence,
the 1ift vector tends to 1ie in the horizontal plane, and the radius of
the helix, R, adjusts until the resultant centrifugal term, w2R, balances
the 1ift term. During an established spin, the presence of non-zero
sideslip, B, is quite often prominent in the generation of the coupling
moments which maintain the equilibrium spin. These particular moments
are usually affected by the rudder setting.

When an aircraft enters a spin from a basically straight and level
flight condition, the center of gravity follows a path that initially
was horizontal, but changes to a vertical spiral. Such a significant
change in flight condition, caused basically by entry into a stall region,
is bound to produce at least transient oscillatory behavior in p,q,r, the

rotation rates about the vehicle roll, pitch and yaw axes, respectively.
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Generally, such oscillations dissipate before one or two spin revolutions
have occurred; however, in some instances, these oscillations may grow in
amplitude. Characteristic of such oscillatory spins is the large change
of aircraft attitude with respect to the horizon as roll rate p oscillates
(Kerr(1956)). The oscillations may cause the motion to change from a spin
to a post-stall gyratidn, in which rolling motion is prominent.

We have devoted the bulk of our spin analysis efforts in this report
to the study of spin behavior when the aircraft is in flat spin < tua-
tions. This is primarily because flat spins have tended to be the most
troublesome ones, in that recovery from them is usually very difficult
to achieve. This is because much of the spin equilibrium regime is
stable, which requires active control for recovery. Aircraft susceptible
to post-stall entry into flat spins tend to have such characteristics as
lengthened fuselage forebodies, increased relative distribution of mass

in the fuselage, and wings with short span. The design ideal is that the

aircraft equilibrium be unstable in flat spin over as wide a control regime
as possible, so that recovery from flat spin is easy.

3.1.2 Nature and Characteristics of Stall

Stall is the condition of dramatic loss of 1ift due to a change in
the operating state of the aircraft. Stall entry is typically a longi-
tudinal phenomenon, in that application of elevator will cause angle-
of-attack to grow excessively. Lift is proportional to angle-of-attack
until a value for o is reached, ASTALL® at which flow separation around the
wings occurs. The wake becomes turbulent, 1ifting capacity is sharply
reduced, and the aircraft is said to have stalled. Stall, then, is a

major phenomenon of high-a flight. Often, pre-stall buffeting or wing rock

N A R e s ,T*‘—— .
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warn the pilot, though not always in time. Subsequent to stall, depending
on the state of the aircraft, there may be post-stall departure into spin,
roll departure, or autorotation; all of these are undesirable motions,
particulariy spin, which can be an equilibrium state, structurally stable
over the available range of control values.

The pilot generally has to assume active control of the vehicle once
the aircraft has stalled, and there may be extreme conditions which only an
autopilot can deal with. In any event, one of the main goals of aircraft
and flight control system design is to extend the operational flight regime
as much as possible by avoiding stall situations, and to provide the

pilot with adequate warning when he is about to encounter stall.
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3.2 Spin Equations of Motion, Assumptions, Constraints

The equations of motion which adequately model spin behavior require
both the full set of coupled nonlinear terms and a data base for the
aerodynamic coefficients which is comprehensive enough to include regimes
in which spins occur. In the equations that follow, engine thrust and
gyroscopic terms are not included. The role of engine thrust in spin
entry and recovery dynamics will be studied in subsequent projects. Pre-
vious work {Grafton 1966, Lusby 1961) has shown these effects to be small;*
furthermore, the greatly reduced airflow along the Tongitudinal axis may
cause serious engine damage, erratic thrust behavior, and flameouts. Finally,
the variation of atmospheric density p with altitude h is neglected, so
that dynamic pressure q is a function only of airspeed V. The basic equa-

tions, then, are:

qs i . .
a=q+ [’(%V Cx - % sing + r sme)sma
( C + 9— COS6 CO0S¢ - P s1ns)cos{lsecs (3.2.1)

-[(%% cx - % sine) sing + r]cow

( C + g-cosesm¢>c056

- [(%% cC, + %cosecos¢)sins - []S'ina (3.2.2)

e

( ) (mv X ‘3’ Sine)COSQCOSS +(§l_\sl- Cy + gv- COSGSin¢)sins

g
(mv cz + cosecos¢)sinacose (3.2.3)

*However, thrust seems to play a prominent role in spin entry dynamics.
See Sec. 3.3.
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. Iz"Iy Ixz2 by~ I Iz
p = - I + I I q]" + 1 - li—_ T pq
X X'z z X
ish fo 4 ]
+ CE + T Cn | 1 ! (3'2'4)
X p XZ_j
- 1 -1 1
R R e o (o ) (3.2.5)
y y y
.. Ix22 I - Ix IZ-I IXZ
R S i sl LIRS s el
X'z 2z X z

- I I 2
qsb { “xz 1 _ xz
+ I, < T Co * Cn)_J 1 II (3.2.6)

These equations are derived principally from Adams (1972), but some
of the terms in the expansion of the force-moment coefficients were added
from other sources (Moore, Anglin (1971) and Brady(1969)). Notation is pre-
sented in Appendix A,

The following kinematical relationships are needed to fully describe

the motion:

§ = q cos¢ - r sing (3.2.7)

¢ = p+ q tandsing + r tanecosé (3.2.8)

¥ = a sinpsecs + r cos¢secs (3.2.9)

R = VIcosn + VIsinn (3.2.10)
X y

Rn = -Visinn + v;cosn (3.2.11)

b=V (3.2.12)
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V[cosa cosp cosy cose + sina(cosy sine sing - siny cose)

+ sina cosB(cosy sine cos¢ + siny sing)] (3.2.13a)

V[cosa cosg siny cose + sina(siny sine sing + cosy cose)

+ sina cosg(siny sine cos¢ - cosy sing)] (3.2.13b)

V[-cosa cosg sine + sina cosé sing + sina cosg cose cose] (3.2.13c)

(3.2.1) to (3.2.6) the aerodynamic coefficients are expanded

C(asBs6=0) + C_ (a,B)Se (3.2.14a)
X - x6e

C (a,8,6=0) + cy («,8)0€ + C_ (a,B)da + Cy {(a,8)8r

4 se Ysa sr
b
»()]ey 0+ ¢, te] (3.2.14)
= C,(a,8,6=0) +C, (a,8)e (3.2.14c¢)
Se

C,(a,8,8=0) + C, (a,B)be + C, (a,p)ea + c, (a,B)ér
e sa sr
+(§bv) [Czp(a)p + Clr(a)r‘] (3.2.14d)

Cp(as8:820) + . (a,8)0e + (é%>Cmq(a)q (3.2.14e)

$
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cn = Cn(a,6,§=0) +C  (a,B)ée + cn (a,B)8a + cn (a,B)6r

se Sa ér

+(2b—v)[cn (a)p + C (a)r] (3.2.14f)
P r |

n

The above system, Eqs. (3.2.1) - (3.2.12), allows a complete time his-
tory for general motion of the aircraft. Note that Egs. (3.2.1) - (3.2.8)
are a self-contained sub-system, not requiring information from Eqs. (3.2.9) -
(3.2.12); the converse is not true.

We shall now digress a bit to discuss how the equilibrium system used
by BACTM is developed from the dynamic system of equations. By "equi-
1ibrium" is meant dynamic equilibrium. That is, we are seeking all sets
of points (x,8) for which f(x,§) =0. Here, the elements of the vector f
consist of theright-hand terms in Eqs. (3.2.1) - (3.2.8), for one system;
the elements of the vector x are (p,q,r,a,B,V,8,6), for that system; and
the elements of § are (8a,8e,8r). At £=0, of course, all time derivatives
of x are zero, so that p,q,r, etc., have fixed values. This is dynamic
equilibrium. There remains the very important issue of classifying the
equilibrium points. First, some definitions: A stable equilipbrium point
is one in which motions originating at some point in the neighborhood of
the equilibrium pointjé (x,8), ultimately return to y; an unstable equi-
librium point is one in which any motion beginning at a non-equilibrium
point near ¥ will ultimately diverge from y. A1l equilibria for linear
systems, 2= Fx+ G, are either stable or unstable. For nonlinear systems,
such as we are dealing with here, motions not only may either converge or

diverge asymptotically, but also may develop into limit cycles. This is
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a motion in which the time solution §(§;t), also referred to as an orbit
or trajectory, returns at some time (t+7T) to its value at t, where T is
fixed. Depending on its amplitude, frequency, and other issues (some of
them probably subjective), a limit cycle may or may not be considered a
stable motion. There are other points to emphasize, however. First,
limit cycles themselves are stable or unstables, in the same sense that
equilibrium points, or curves, are; that is, motions starting near a
stable 1imit cycle ultimately end on it, and conversely for unstable
limit cycles. Second, a point on a stable limit cycle is not an equi-
1ibrium point, because x# 0.

Equiiibrium points are classified typically by investigating the
first order term* in the power series (e.g., Taylor) expansion of f(x,$),
evaluated at 2. By the nature of norlinear systems, then, the validity
of the stability classification is restricted to those regions centered
on y where the zeroth and first order terms of the expansion of f are
almost equal to f itself. (This comment has particular relevance to limit
cycle motions.) Specifically, the eigenvalues of the Jacobian matrix, F or
af(x,8)/9x, evaluated at y=(x,8), are used to classify the equilibrium
point. For the eighth-order dynamic system (3.2.1) - (3.2.8), F is 8x8,
and yields eight eigenvalues. If all of these have negative real parts
(any complex eigenvalue has a conjugate mate, as all coefficients in
the equation x = Fx are real) at ¥, that equilibrium point is stable; if
one or more has a positive real part, the equilibrium is unstable. As
alluded to above, this classification, depending as it does only on linear

analysis, cannot provide quantitative information about 1imit cycles

*It can be proven that first order analysis is sufficient for accurate
classification of "nice" nonlinear functions if done in a region close
to the point about which the expansion is done.
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3(we are developing for BACTM, however, a novel approach for quantitative
analysis of limit cycles, using continuation methods. This will be de-
scribed in more detail later). In a region where 1imit cycle behavior
exists, the "governing" equilibrium branch will be unstable, typically
possessing one very lightly damped complex pair of eigenvalues (i.e.,
real part close to zero, but positive); the others have negative real
parts. Thus, when the (linear) eigenanalysis shows a Tightly damped
complex pair, all we can say is that limit cycle motion is expected in
the region. We cannot gquantify the limit cycle (e.q., amplitude, period,
stable or unstable, etc.) without further. analysis. The equilibrium
point which indicates limit cycle motion is actually an unstable one,
and this is in fact true in a "local" sense (that is, in the region
about Q where the linear approximation to f is valid). Motions starting
near such a point diverge; however, once their amplitudes are large
enough so that nonlinear influences are greater, a limit cycle may
result. If this happens, the global motion is stable, and is the asymp-
totic 1imit of motions emanating near the locally unstable equilibrium
point. Such a limit cycle is a stable attractor, and we have seen many
examples of these (see Mehra et al., 1977). Unstable limit cycles do
play an important role as well, but their quantification is considerably

more difficult than that of stable limit cycles. Global bifurcations

deal with the annihilation of stable 1imit cycles by unstable ones, as
system parameters (e.g., control settings) change.
In summary, then, equilibrium points may be stable or unstable. For

a certain type of unstable point, the one with one unstable complex pair
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of eigenvalues, limit cycle notion may result, but not locally. Motion
is locally divergent from all unstable points and locally convergent to
all stable points.

We return now to the aircraft spin equilibrium system. In order
to find the spin equilibrium points, two extra conditions are needed:

i) an equilibrium is specified a priori by the requirement

.

e ™we Re e £ De e

This result is derived from the equilibrium requirement for constant
angular velocity and steady helical motion.

ii) the spin characteristics are specified as dynamical constraints,
to be incorporated in the system Eqs. (3.2.1)-(3.2.12). These constraints

are:

h=h*, a specified constant; (3.2.15)
this decouples the h equation and lets a=q{V) only.

w = 33! (3.2.16)

where w represents the total angular velocity of the aircraft;

y(t*) = 0 (3.2.17)

R . S o




where t* is the time at which the equilibrium solution is made. This
relationship results in no loss of generality, because of the natural J
decoupling of y from the basic dynamical system, Egqs. (3.2.1) - (3.2.8).

Finally,
v = RiT - Bzl (3.2.18)

where i is the unit vector in the direction tangent to the trajectory, and

I

Z is the locally vertical unit vector. This is the constraint for helical

motion. It leads to the relationships

VR =0 |
e By v t? (3.2.19) i
= ’ = + ¢ &
o
A

In (3.2.19), VH is the magnitude of the horizontal component of velocity,
and ¥ is the heading rate. When constraints (3.2.15) - (3.2.17) are in-
corporated into the full dynamic system of equations, the system reduces
to a five-dimensional set of nonlinear algebraic equations for the
equilibrium points in the state space. Before presenting this equilibrium
system, a few consequences of incorporating the constraints will be de-
tailed.*

The requirement V=0 allows for the direct algebraic solution of V as
a function of (a,B,8,p,rs0,0), using Eq. (3.2.3). Specifically, V is the
solution of a quadratic equation. Condition (3.2.16) results in the

jdentities

*Later, we will show an eighth order spin equilibrium which was actually used
for the numerical solutions. This system was used because it is less con-
figuration-dependent and because the continuation algorithms developed for
BACTM (Ch. II) can efficiently handle large order systems.
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$=0
8 =0
Vo=
- (3.2.20)
p = -w sin
g = w Cos8 sing

r = u C0S6 COSé

Considering the last three of these identities, it is seen that a new
state variable, «, has been defined, replacing the set (p,q,r), for a net
reduction of two in the order of the system. Also recall that the time
rate of change of the Euler angles (@,é,é) is not an orthogonal set.
This is not true of the roll, pitch, and yaw rates (p,q,r), which are
orthogonal body axis components of the total aircraft angular velocity
vector, w. As vector components, (@,é,&) do add up to w also, but only in
special cases may i be associated with yaw rate, § with pitch rate, and
so on. This means, as (3.2.20) shows, that all Euler angle rates but ¢
may be zero, yet because of projections, all of (p,q,r) are nonzero.

The reader needing further amplification of this aspect of aircraft
kinematics is referred to an appropriate text covering kinematics, e.g.,
Goldstein (1950}, and in particular, Etkin (1972).

The equilibrium system of equations is:

0=a=uw singcoss + [-sina(FICx --% sine + w co0s6cOS$sing)

+ c05a(F1CZ + %-cosecos¢ + ¢ sinesing)lsecg (3.2.21)

—n e - - wvr
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0=¢g = —[sinb(FICx - %—sine) + w COS6COS¢ JCOSa

+ cosp(F,C + %cosesin«p) - [sinB(FlCZ + %— €0s68coSd) + w sindlsina

17y
(3.2.22)
. 1 I - Ix
0 = {cose6cos¢w) = F [- (FB - —yT——) w? sinecosesing
9 z
IZ—I
- {1+ —I—-z Fe w2€05265iN¢cos¢
X
+ b F4(F5CQ + Cn)] (3.2.23)
. 1 -1
0 = (-sin6w) = = [-w2 c0s6singcoss F8 + —T—l
9 X
I -1
+ w2 F5 - —%—x)- sinecosesing
z
+ b F2(C2 + F6Cn)] (3.2.24)
0 = (cosesingw) = ¢ Fi Co +w2[F7(C0528C052¢ - sin2g)
(I,-1)
- ZI X sinecosecos¢] (3.2.25)
y
The system of Eqs. (3.2.17) - (3.2.21) may be compactly expressed as
f(’.f’é) =0 (3.2.26)
where

X = (a,B8,0,0,¢) (3.2.27)

In the above system, the following identities are introduced

¢ ey
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= oVS = Xz
Fi1 = %m "6 ™ T,
- pV2s I
"2 Fp= 15
y
_ pV2S .
Ry F3 = Fsfe (3.2.28)
F, = 8Lz Fg=1-Fg
z F =L
1 10 ~ 2V
F=_X£ -
5 IX F..o= &
1152V

Note the presence of V in the Fi' This requires, then, the introduction of
the quadratic expression for V into the system, which is usually no prob-
lem for solution procedures which are iterative in nature, given a starting

point. When the system is solved for the equilibrium values (a,B,w,8,¢),

and V, then other quantities, such as R, may be found:

[sina(cos¢ - cosBsing)]

e

R =

It is worthwhile also to monitor, at the equilibrium solution points,
the following parameters, which have been found by experimenters to be use-
ful in detecting departure into spin:

Directional Departure Parameter

I
= -z :
CnB = Cn cosa T C2851n“ (3.2.29)
DYN B

Lateral Control Directional Parameter

c + K Cy

n .
= sa sr

8 Bl %sa sr
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_or
where K = 53

Both Cn and LCDP should be positive for stable motion. However, ,

B
DYN
they were originally intended to compensate for the dynamic, or forced

oscillation, derivatives. Therefore, when more complete aero data

bases are utilized, parameters such as Cn and LCDP may lose some

B
DYN
significance. They are, in essence, a preliminary design tool. Other

derivatives such as Cn and Cm may be interesting, and it is certainly

B
of interest to verify that

@ > GerpL:

Because of the improved methodology developed during the project,
it has become possible to use a somewhat more general set of dynamic
equations for the study of spin behavior. This set is an eighth order
system, and it has the advantage of flexibility and ease in terms of de-
riving the e1emgnts of the system Jacobian matrix analytically. This system
consists of Eq. (3.2.1) - (3.2.6) as well as the kinematic relations (3.2.7)
and (3.2.8), and has been coded directly. By reasonable choice of initial
conditions, the solution of this set either for time history trajectories
or for equilibrium surfaces will automatically incorporate the constraint
relationships (3.2.15) - (3.2.17).

Additionally, a second set of velocity state variables is used when
time history solutions are generated. This set uses the body-axis com-
pcnents of V, namely (u,v,w), as state variables instead of the set (V,a,8) i
which is defined by Eqs. (3.2.1) - (3.2.3). The set (V,a,B8) is the wind-

axis velocity state and the set (u,v,w) is the body-axis velocity state,
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whose dynamical relations are given by:

U= -gsing +vr - wq + %? Cx (3.2.31)
V = g cosesing + wp - ur + %?-Qy (3.2.32)
W = g COS6COS$ + uq - vp + %? c, (3.2.33)

where CX, C., CZ are the total aero force coefficients along the aircraft

Y
X-, y- and z-axes. An auxiliary set of relations enables computation of

variables of importance:

tan'l(w/u) (3.2.34)

e
1

sin"Liv/v) (3.2.35)

V=2t (3.2.36)

w
1]

The use of the body-axis set is disadvantageous in that the aero-
dynamic coefficients are functions of a and B, so that (3.2.34) and (3.2.35)
must be carried along. However, with this set, and with the equation for
heading angle (also the yaw angle in a yaw-pitch-roll inertial-to-body
Euler transformation sequence)--Eq. (3.2.9)--several kinematic and dynamic
variables of interest in the force-moment equations may be generated
rather easily. Also, this set is "cleaner" in form than the wind-axis
set, as it avoids the transcendental terms in a and B which represent the
body-to-wind axis transformation.

Some more terms which are worth monitoring in the study of staill

and spin behavior include
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me
"

mvy + prp + Iyqq + Izrr

v

(Ui + W + ww)/V

if the body-axis velocity set is used

w=vpZ + q2 + rZ
VVERT = -u sine + (v sing + w cos¢)cosa,
positive downward,
VNORTH = cosy[u cose + (v sing + w cos¢)sine]
- siny(v cos¢ - w sing)
VEAST = sinyfu cose + (v sing + w cos¢)sins]

+ cosy(v cos¢ - w sing)

X = + tf v d
NORTH = *NORTH NORTH 9t
0 tO

t
f
Yeast ~ Yeast, * ‘/;o Veast 9t

Eg = % 1,42/(asb)

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

.37)

.38)

.39)

.40)

.41)

.42)

.43)

.44)

.45)

.46)

.47)

.48)
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where
= cin2 i 02 2 2 ;
Iv sin eIx + (sin ¢Iy + COS ¢Iz)cos 6 + IXZcos¢s1n26 (3.2.49)
(when Ixy = Iyz = 0)
n X=X 2 &
DSPIN = }E: X i (3.2.50)

i=1

E is a scalar quantity representing total vehicle kinetic energy
(assuming a purely rigid body); the first term is due to translational
(center of mass) motion, and the second represents the rotational contri-
bution. Here, I is the moment of inertia tensor, written as a square
3x3 matrix; thus, pre- and post-multiplication of I by the angular
velocity vector w=(p,q,r) results in the scalar quantity (assuming that

the off-diagonal terms of I, I I, and Iyz’ are zero)

xy® "xz

e low = %pr + 51 g° + 4l r (3.2.51)

Note that the only sensible axis system for coordinatization of [ is the
Body—axis system, and thus w is also in this system for compatibility.

E is merely the time rate of change of E, the kinetic emergy. Depry

is a Euclidean metric which is an indicator of how far a given point
in the state space, x, is from a known (input) stable equilibrium spin

location, XspIN® In (3.2.50), X3 is a component of the state vector x,

say a, X is the value of that component at a known spin equilibrium
i
condition, and n is the number of state elements in x. Dgpyy, then, is
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intended to provide some indication of how far a particular point
X € R" is from a known spin equilibrium point, Xg
Equations (3.2.37) - (3.2.50) represent relations for quantities
which are of interest in investigating spin motion, as well as the quan-
tities defined by Eq. (3.2.29), (3.2.30) and Cm . Also, selected terms

from the basic dynamic set of equations are usually of interest.

3.2.1 Aircraft F Configuration; Representing Aero Data by Spline Functions

Because of the completeness and compactness of data which is relevant
to the study of spin conditions, aircraft Configuration B from Moore,

Anglin (1971) will be used first in this study. We shall henceforth call
this configuration aircraft F. Additionally, there are several sources
of aerodynamic data for the F-4 Series of aircraft, namely, Rutan (1970),
Adams (1972), Moore and Anglin (1971), Brady (1969); however, some extra
effort is required to coalesce and reduce these data to the form of air-
craft F, and so the F-4 Series will be investigated later. Moore, Anglin
(1971) use the F-4 data, but not for the study of equilibrium spins, so
no high-a data is supplied there. Data for Aircraft F are presented in
Tables I and II.

Aircraft F is a variable sweep fighter aircraft whose aerodynamic data
is somewhat equivalent to that of the F-111, although it must be emphasized
that values were modified, especially the Cn derivatives, to allow the simu-
lation results to readily produce "typical" spin motions.

It has been decided to model the aero data for aircraft F by using
cubic and bi-cubic splines. A cubic spline is a means of representing data

points by third order polynomials. The values of the four coefficients
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which specify the polynomials are determined by continuity and smoothness
conditions at the so-called "“knots," which are typically but not neces-
sarily the data points themselves. Thus, the cubic polynomial between
any two knots differs from that between the neighboring knots, but their
respective coefficients are selected so that, at their common knot, the
value itself and (for cubic splines) the value of the first two deriva-
tives match. The bi-cubic spline is conceptually similar to the cubic
spline, except that it is a cubic polynomial in two variables, and not
one. See Eq. (3.2.52). We have developed analytic functions in (a,B)
for the coefficients by using cubic and bi-cubic splines, for the follow-

ing reasons:

(i) splines assure smoothness, especially at the boundaries (knots);

(i) The numerical algorithm employed by BACTM to generate the equi-
Tibrium surfaces requires the partial derivatives of the right
hand side of Eqs. (3.2.1) - (3.2.6) with respect to the state

and control varijables--i.e., it is required to generate the

matrix*

afC )

( g
oa

The stability analysis in the neighborhood of the equilibrium

Since (a,B) € x, expressions such as "will be required.
surfaces also requires this matrix.

(iii) The data need not be supplied over uniform increments. This
has the potential for saving much core on the computer, since
the smoother portions of the data don't require as many points

to adequately define the function.

*The coefficients are linear in the control variables 6 so this aspect is
straightforward, since the partials are the control stability derivatives.
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TABLE I
Aircraft F:
Weight, N (TIb)cuuieniiiiiiriiiiininieernrneenneenannns 222 410 (50 000)
i Wing Area, m2 (ft2) ... iietiiiiennrinerneeneeneannannn 48.77 (525.0)
Wing span, m (ft) .. .oeereininneiiiiienrnnnnnennnnnns 19.20 (63.0)
Mean aerodynamic chord, m (ft).....covvvivrnnrrnnnnn.. 2.76 (9.04)
Lo KG-M2 (STUG=Ft2).eveereeernennrenenennenennennnnes 67 790 (50000)
Iy’ Kg-m2 (STUG-Tt2) . it ireiiiiieriiirernrrnnannnas 427 348 (315200)
IZ, Kg-m2 (STUG-TL2) . uiereiiieerriniereeeennnnaannnns 476 564 (351 500)
-m2 )

Ixz’ kg-m?2 (STUG=Ft2 ). . iiicinrriinerinnernneornneenas 0 (0)
Maximum control-surface deflections:

Ge, deg ------------------------------------------ 10, -25

80 BBgttevnneersieeenoeiaeisesasocsecanasonnnnns +15

Gr’ LT +30

- P r— R LR . f e - B
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TABLE 11 Aerodynamic Characteristics, Aircraft F
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TABLE II, concluded
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The general form of a bi-cubic spline is

L -1 -1
S(a,8) = T 1 Cyla-Ade)] [e-8(2,)] (3.2.52)

i=1 j=1
where A(Qa) and B(QB) are the values for o and B, respectively, at the
lower left corner of the rectangle of values for o and B which contains
the input set (a,B8). S is the value of the particular coefficient at the
input set {a,B). Library routines (IMSL) are used *o generate the Cij’
and to compute S and its partials.

Use of splines may appear to be introducing an overly-sophisticated
approach for a data base as relatively simple as the aircraft F model, but
when the more complex data bases such as that for the F-4 are added, the
value of the spline approximations should be more appreciated. To assure
a good spline fit, the location of the junction points, or knots, is an
important factor. When this and similar considerations are efficiently
dealt with, the method of splines becomes an efficient modeling tool. In
our applications, the knots are placed at each data point. More back-
ground on the theory and uses of splines may be found in Ahlberg, Nilson
and Walsh (1967).

Splines by their nature allow for accurate modeling of the partiel
derivatives of the dependent variable (aerodynamic coefficients) with
respect to the independent variable(s) (o« and/or g8). This fact is impor-
tant in the application here, because these partials are required in
rder to evaluate the equilibrium and bifurcation surfaces; and the accuracy

¢ *neir values may often be critical to efficiently starting up the
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numerical solution. Whereas curves which result from a less rigorous
patching-together of polynomials may well experience severe discontinuity
problemns for their derivatives at the boundary points, spline-produced
curves by their nature (i.e., the constraint that the second derivatives
be equal at each knot which "shares" two splines) have no such problems.

The splines used to model aircraft F's aerodynamic data are "natural"
cubic (or bi-cubic) splines*, and the knots are specified to be located
at each data point. Of the 22 coefficients which are used by aircraft F,
all but four are functions of o and are thus modeled by the one-dimen-
sional cubic splines. Cy, Cn, Cz’ and Cm only are functions both of o and
g and are modeled by bi-cubic splines. Cubic spline plots are shown in
Figs. 3.1 to 3.6. These are plots of each of the 18 a-dependent coeffi-
cients, and their respective partials with respect to o (in degrees).
The plot of the basic function is the line containing the x's, the latter
representing the data points (hence, also the knots) obtained from Moore,
Anglin (1971). Both the coefficients and their partials with respect to
o are computed and plotted in dimensionless units, The units for a (abscissa)
are degrees. The derivative with respect to o is plotted as a clean, solid
line. Notice how smooth the derivative curves are. The large change in
shape of most of the curves beginning in the range « = 35° to 50° (.69 to .91
radians) is due principally to the loss of rudder control effectiveness for
a2 50°. See, in particular, the plots of the lateral mode coefficients
appearing “n Figs. 3.3 to 3.6.

The bi-cubic spline, two-dimensional, plots of a representative

function of both o and 8, Cm(a,e), are presented in Figs. 3.7 and 3.8.

*A natural cubic spline is one whose second derivatives are zero at the
end points.

1 D
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Fig. 3.7 shows Cm and its g-derivative, Cm » both of which are in dimen-
8

sionless units, plotted against sideslip angle g, in degrees. The two
plots shown in Fig. 3.7 are for two different values of angle-of-attack
a, 65° and 32.5° respectively. The latter value for o represents an in-
terpolation on the data. By rotating the projection plane depicted in

Fig. 3.7 by 90°, one obtains plots of Cm(a,s) and its a-derivative, Cm ,
a
versus o, shown in Fig. 3.8 . The units are as in Fig. 3.7 . The two

values of B for which the Fig. 3.8 plots are made, +25°, are the interpola-
tion values for g.

A final note on the use of spline function approximations by BACTM.
Because the spline package had already been implemented to represent the
aero data, it was also decided to use splines, and the same routines,
in evaluating numerical derivative, e.g., to generate elements of
[3f/3x] which are difficult to obtain analytically. This duality of
function adds to the efficiency of BACTM. See Section 2.1.2 for a dis-

cussion of the numerical differentiation algorithm.




3.3 Entry into Spin; Explanation of Equilibrium Surface Plots

Experience shows that a very complete set of aerodvnamics is required
to represent properly the extremely complex aircraft motions which arise
during stall/spin flight conditions. [n this section, we shall explore
the spin entry behavior of aircraft F. This model does not possess all of
the desirable features for undertaking a thorough, realistic study of spin
behavior. However, it has been an excellent model in providing a small
yep‘adequate basis about which to construct the BACTM Spin Analysis system;
. and fof prov%ding much insight into the nature of developed spin motion in
particular.

The results to be shown in this section, however, will reveal that
careful study of the equilibrium surfaces generated by BACTM is required
in order to understand the subtleties of nonlinear, high-oa aircraft
motion. Interpretation of equilibrium surfaces is a case in point. It
can be rigorously demonstrated that motions originating in the vicinity
of a "stable" branch (such branches are labeled with an "S$" in the figures)
will ultimately arrive at a point on that branch, thereby achieving a
condition of dynamic equilibrium (i.e., i= 0). See Section 3.2 and Chapter II
for further discussion. Chapter II contains a bibliography referencing detailed
proofs. The only problem, then, for regions dominated by a stable branch
is determining quantitatively the neighborhood from which all motions lead
to that branch (this neighborhood is called a "domain of attraction").

Very often, a boundary to the domain of attraction is a "simple" un-

stable branch, e.g., one in which there is one positive real root--this

~ e N N
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branch is designated by a "U". In Fig. 3.9 we can see an example of

this situation. The point A in this figure is centered on a stable branch
in the equilibrium flat spin region. This branch is bordered above and
below by a U-branch. Thus, motions initiated with a contrul setting close

to that of point A, and with initial conditions inside the two U-branches,

will return to the S-branch. Units for this and subsequent figures are degrees.

Before proceeding further, we will now explain some of the details
of Fig. 3.9, which is a typical plot of an equilibrium surface. The
branches shown represent loci of points for which f(x,8) =0, generated by
holding two of the elements of § at given values, and varying the third
(see Chapter II). The letters on these branches provide local stability

th order system x = f(x,8), the local

information, as follows: for the n
stability information 1s obtained from the eigenvalues of the square
matrix [8f/3x], which is part of the first order (linear) term in the
polynomial expansion of f. This matrix is of size nxn, and always yields
n eigenvalues, which may either be real or in complex pairs (since

[3f/5x] has real elements). If all n of the eigenvalues have negative
real parts, the equilibrium point is a stable one, designated by S. Any
other situation results in an equilibrium point which is locally unstable.
Several unstable cases are now outlined: 1if there are (n-1) eigenvalues
with negative real parts, and the remaining one is positive {this one is
necessarily a real eigenvalue as complex eigenvalues come in pairs), the
point is designated by a U; if (n-2) have negative real parts and a com-
plex pair has a positive real part, the point is designated by L. How-
ever, if there are (n-2) "stable" eigenvalues and two ;eal, positive ones,

then the point has two simple U's, or is.designated by the symbol A, as
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seen in the table at the top of Fig. 3.9. Except for the one, unique
stable case (S), the table gives symbolic correspondences for all com-
binations of unstable eigenvalues; that is, eigenvalues with positive
real parts.

To summarize to this point, when U-branches have been found near
S-branches, they typically outline much of the domain of attraction to
that stable branch.

As for all other (unstable) branches, there are two major points of
interest with regards to aircraft F equilibrium results:

1) The stability analysis is local, and based only on first order,
or linear, information. This means that at a U-branch, say the one including
point E in Fig. 3.9, the motion will diverge locally; in fact, for any
unstable point, any point but an S-point, the motion diverges locally.

But we can say more regarding the point E case: if the motion starts on
the S-branch side of the U-branch, it wiil ultimately come to equilibrium
on the S-branch. This is a global result however, and is obtained not
from the information provided by [3f/3x] at point E, but from a more global
knowledge of the equilibrium surface--that is, we know that the S-branch
"attractor" exists. If the motion starts on the other side* of the U-
branch, it is unclear from the equilibrium surface plot what will ultimately
happen. The divergence feature applies only in a local sense and
guarantees only that there will be no equilibrium near the U-branch.
Globally, the motion is attracted elsewhere from the U-branch, either to

a distant S-branch (not shown), or to a limit cycle, perhaps the one

governed by the L-branch above point E in Fig. 3.9a; or finally, to an

*Strictly speaking, motions originating exactly on the U-branch or any
other unstable branch, will remain there; however, the smallest pertur-
bation will induce divergent behavior, which is what happens in the real
world.
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essentially erratic motion not characterized as either a stable equi-
librium (x=0) or a limit cycle (x(t+T)=x(T), 0<T<x). Thus, local
instability is not necessarily global instability.

2) L-branches are of particular interest, because they are very
prevalent in high-a flight regimes, and particularly so in the spin
entry region depicted in Fig. 3.9 (the lower branch which includes points
B, C, D, E). As defined above, the L-branches define unstable equilibrium
points at which [3f/3x], the Jacobian matrix, has (n-2) "stable" eigen-
values and one unstable complex pair. Locally, then, this indicates
oscillatory divergence. Globally, however, it is quite possible that
this 'ivergence is in actuality growth to a stable limit cycle (hence,
the L-symbol designation). The existence and stability of 1imit cycles
is not explicitly obtained from the equilibrium surfaces (we are currently
developing an algorithm to do this analysis), but stable limit cycles in
our experience are always associated with an L-branch. In a sense, then,
stable 1imit cycles may be regarded as stable equilibria, unless ampli-
tude variations are excessive. At any rate, there are domains of attrac-
tion to stable 1imit cycles, although their boundaries are not as easily
computed as are those for the proper equilibrium points (S-branches).
Also, there are known to exist unstable 1imit cycles. 1In analogy to the
U-branches, if a motion could begin exactly on an unstable limit cycle,
and be free of random disturbances, it would remain on this cycle. Typically,
of course, the motion readily diverges, usually to a stable limit cycle.
Unstable 1imit cycles are very difficult to isolate, and there exists no
known algorithm of sufficient generality which can compute their location.

They do exist however, and, as the continuation parameter (ér in Fig. 3.9)

v . J“ - » s - = T g+ s i emimem
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changes, are capable of annihilating a stable 1imit cycle. This phenomenon

is called a global bifurcation, and may explain the limit point below

point B in Fig. 3.9a. Here, as one decreases &r from point D, the equi-
1ibrium curves tell us to expect a Hopf bifurcation (S-to-L transition
on the branch) to a Timit cycle. Such limit cycles are typically stable,
at least when in the region close to the S branch, but again, this in-
formation cannot be obtained from Fig. 3.9. As &r decreases, however,
this 1imit cycle is annihilated; we cannot indicate for sure exactly
where (although the figure indicates approximately -21°, the 1imit cycle
motion is not a local motion, and the limit cycle may be annihilated
at a very different value, if at all), but, given that this occurs, it
is quite likely that the motion will be attracted to a stable V1imit cycle
governed by the segment of the equilibrium branch including point B. This
hypothetical control sequence outlines how a relatively "clean" rolling
motion at point D (8a=15° in this example, recall) is corrupted into
buffeting and oscillatory motion which conceivably, as &r is decreased
further, undergoes a jump to oscillatory, steep spin conditions (point B).
From analysis of time history results, discussed in more detail later,
there is a strongly stable--i.e., possessing a large domain of attraction--
1imit cycle in the vicinity of point B. This situation precludes transi-
tion from steep spin to the flat spin equilibrium at point A, using ér
alone.

Summarizing unstable branches, then, the major point is that in a
local sense all motions diverge from them; however, limit cycles typically
exist about a subset of these, the L-branches, and these themselves may !

be stable (attractors) or unstable. When a stable limit cycle exists,
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it is usually centered on the L-branch; however, the motion will never
decay to the L-branch itself. 1In spite of this, it is often convenient
to consider the stable limit cycle as an equilibrium condition, which may
be disrupted as a neighboring unstable 1imit cycle converges upon it,
under the influence of changing control parameters.

A final note on limit cycles: they are a distinctly nonlinear phe-
nomenon, ltacking many properties of the linear osciliator. In the latter,
an incremental change in initial conditions results in an incrementally
different, yet stable, orbit. Such a change applied in a 1imit cycle
reaion will only produce a temporary perturbation, followed by decay to
the original limit cycle. That is, in a given subspace, there are only
a countable number of possible 1imit cycles, while a continuum of ampli-
tudes is possible for the linear oscillator.

Returning to the aircraft F spin entry case, Fig. 3.9 is a repre-
sentative situation (the insensitivity to Se of the equilibrium surfaces
in this flight regime will be indicated later; thus, 8e=0° is selected),

in that the flat, equilibrium spin region, the upper branch in Fig. 3.9a,

has a relatively small stable equilibrium region. Further, the steep and
intermediate spin regions, the upper part of the lower branch, as well as
most of the other non-equilibrium regions, are characterized by oscilla-
tory behavior, with 1imit cycle motion quite likely. As stated above,
several of the 1imit cycle regions exert strong attraction on neighboring
motions, making transition to flat spin very difficult. At any rate, our
experience with aircraft F indicates that oscillatory motions at inter-

mediate angies of attack (30° s a s 65°) is a general feature for any control
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setting; this observation consequently adds to our desire to study in
detail the behavior and stability of limit cycle motion in general, and
the stall/post-stall/spin entry flight regime in particular, because

of its oscillatory character. A more useful study of spin entry would
involve using the -4 model, which is more realistic and representative
in this flight regime.

In addition to the above situation, Bihrle (1976) has noted (and it
is verified here) that ensuing high-a motion is extremely sensitive both
to control sequencing and to relatively small variations in the initial
conditions. Results presented here provide the basis for the above
observations and are typical of systems with bifurcations.

In the following discussion, we have concentrated on right pro-spin
motions; that is, yaw rate (r) is positive, due to negative rudder (ér)
deflection, and aileron (sa) is positive. For convenience, then, we shall
define

sspy 2 (82,6e,6r) = (15,-21,-25) degrees

Because of nonlinear dynamics, this set of controls corresponds to more than
one equilibrium point. However, associated with é¢ppy is a stable, de-
veloped flat spin equilibrium state for aircraft F,

ESPIN 4 (Pstr,a,B,V,9’¢)
(30,-4.,100.,73.5,-3.,443,-16.6,-2.29)

The units are degrees and feet per second. These quantities will be used
for reference in the following sections.
Finally, it should be noted that many of the equilibrium surfaces

presented in this chapter may not contain all of the possible equilibrium
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branches for the given control region. This is not necessarily a minor
detail, because some of the branches not shown may possibly represent
stable attractors for certain limit cycle motions.

3.3.1 High-o Motions to Stall, Aircraft F

Fig. 3.10 shows equilibrium surfaces in the (r,oa,p)-8e plane for
aircraft F, centered on the trim state with neutral controls. As will be
the case unless otherwise specified, velocity (V) is fixed at 600 fps, and
gravity is assumed negligible (i.e., the non-spin set of dynamic equations
is used). Note that there are regions (8e >0) where five equilibrium
solutions exist, and three of these are stable. As Se goes negative,
pitch-up occurs, signified by the growing values in a. From 8e ~-15° the
stable branch changes into a 1imit cycle branch; this signifies the onset
of wing rock behavior and pre-stall buffeting. Note in particular that
on the roll-rate plot, there is a region in de >0 for which no solutions
are shown. At the boundary points to this region, a has reached its
minimum value of -~10°, and no aerodata were available below this value.
Fig. 3.11a shows a time history plot in which V is free to vary and Se is
increased from 0° to -9°, then -17°, then -20°. Note that when e is
-17° and -20°, there is evidence of large longitudinal oscillations, but
little wing rock motion. Fig. 3.11b shows a different e time sequence
than 3.11a, with velocity allowed to vary, and basically similar results.
If velocity is kept constant, buffeting and wing rock activity are very
prominent (Fig. 3.11c) as will be shown in Sec. 3.3.3, where Figs. 3.10
and 3.11 are discussed further.

We consider now a maneuver in which both heading change and high-g

pullup is accomplished by pulling the stick back sharply (high negative se),

p— r--— - — e e o T <
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and then over (high aileron). The Se maneuver can be traced in Figure 3.10,

and Figure 3.12 shows the da direction from Point A in Figure 3.10. It is

—-

seen in Figure 3.12 that, for e = -11°, beyond Sa = 15° there is a jump,
or a Hopf Bifurcation, to a limit cycle with high values of (r,.,p).

The time history presented in Figure 3.13 confirms these conclusions,
a]thougﬁ the transition to post-stall divergence occurring at 30 sec. is

aided by introducing negative Sr as well. Note that the presence of nonzero

§r causes the initiation of spin-like behavior in the post-stall motions.
The DSPIN parameter, a normalized metric for |[[(x,8) - (xgprysSspry? Il »
shows a return to spin conditions. The oscillatory nature of the developing
spin is typical of aircraft F behavior in transitioning from trim to high-a
flight regimes.

The equilibrium surfaces in Fig. 3.14 show the rudder effect on the
type of equilibrium condition which produces aircraft behavior similar to
that of the maneuver discussed above. In this instance, §e=-20° and
§a=0°, while &r varies. The segment of the L-branch (limit cycle beha-
vior expected) near (p,r)=0, 8r=0°, actually exhibits very mild unstable
growth to oscillatory behavior (very large characteristic or response time)
when the corresponding time history run is made (figure not shown); but,
as &r moves from 0° to negative values, the response quickens greatly, and
the oscillations grow. A similar effect is noted in the trajectories of
Fig. 3.13.

3.3.2 Non-Spin Equilibrium Surfaces (Aircraft F)

As above, these results were generated from the non-spin set of
dynamic equations, which assume zero gravity and constant velocity (V).

Except where stated otherwise, V is assumed to be 600 fps. It turns out,

~ P
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at least for aircraft F, that the non-spin set can also be used in the
soin regime without destroying essential features. This represents a
significant result for first-cut analysis; the numerical results, however,
do differ, since gravity does play a role in spin behavior. However,
gravity has negligible influence on equilibrium behavior in non-spin,
high-a regimes. Moreover, steady state values for 3 and ¢ do not exist
in the high-o regimes. Hacker and Oprisiu (1974) show that the effects
of gravity in roll coupling may be taken into account by a perturbation
ana]ysis.

The projections of the equilibrium manifold on different planes in
the state and control space are shown in Figures 3.10, 3.12, 3.14, 3.15
and 3.16. In each of these runs, the control is extended from x =0 over
as much of its allowable range as possible, with the remaining two controls
fixed at zero. The elevator case has been discussed in Section 3.3.1.
Aswill be seen, the rudder introduces the most dramatic changes in equilibrium
conditions in this region (Figures 3.14 and 3.15). In fact, the aileron
behaves as an almost purely linear control over its entire range for
se=6r=0°, and all equilibria are stable (Figure 3.16). Note how roll
rate (p) is the only variable reasonably sensitive to Sa changes; thus,
there is also decoupling. But the rudder, in this as well as most other
aircraft F flight regimes, exhibits far different characteristics. This
is further exemplified by the time history shown in Figure 3.17. This
figure shows the clear growth to a high-amplitude lirit cycle as &r steps
in 10° increments from 0° to -40°, with da=6e=0°. C(learly, the effect

of rudder is nonlinear in this region, and there is a high degree of

[T »—-..—-...—T - - v iy - = ee e g = yy—
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coupling, as both Figure 3.15 and 3.17 show.

From Point A in Figure 3.15, 8r=-6.4°, a surface is generated along

the Se direction, and the resuits are shown in Figure 3.18.* This figure

represents a parallel slice of the surface only 6.47 removed alonqg the

Sr direction from the projection shown in Figure 3.10, yet it is evident

how dramatic the difference is, both qualitatively and quantitatively.

A third section of the equilibrium surface, for &r=-257, is presented

Figure 3.19, and represents the projection alona &e centered on Pyint B

in Figure 3.15. Again, there is a considerable difference in the shape

in

of the surface. WNote further that inspecting the p-plot alone may cause

one to suspect a possible bifurcation point; that is, the point where the

branches intersect, at Se -4°. This is not the case, however, because

there is no such overlap for the (a,r) curves.

From Point C in Figure 3.18, the 8e =0° point, an orthogonal pro-
jection is generated along the third control direction, Sa, and Figure
shows the results. For the (&e,dr)-values given, i.e., (0,-6,4°), the
§a =0° point is a precariously stable one. Only small variations are
needed to cause either a jump (8a <0) or development of an unstable or
limit cycle conditions (8a>0).

Returning to Figure 3.16, for which r=0, some other projections
of the equilibrium surface are compared in Figures 3.21 and 3.22. In

Figure 3.21, with the same controls as Figure 3.20, i.e., &r=-6.4°,

*In this figure, and in others where it appears, an asterisk indicates
that two pairs of complex eigenvalues of [3f/ax] have positive real
parts--an LL-condition.

3.20
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Se = 0°, another branch of the equilibrium surface is shown. Aileron has now
lost its linear influence here, and there is significant coupling as well as
sharp lack of symmetry in p. Figure 3.22, for which §r=-25°, shows very
similar curves as does Figure 3.16, for which &r=0; however, the equili-
brium values have increased, and more significantly, roll rate is almost
totally insensitive to 6a commands. The aircraft is in an autorotational
state in roll. Figure 3.23 is a case similar to Figure 3.22, i.e., ér=-25°,
except that now de=10.3° (pitch down). It can be seen that higher equi-
1ibrium values ensue for this Se, with somewhat less stability. (Only the
r-8a plot is shown since others are quite similar).

A further effect of the rudder can be seen by comparing Figure 3.12
with Figure 3.24. In both of these figures, se=-11° and 6a is the inde-
pendent variable. For 8r=13° in Figure 3.24, there are no stable regions
on the branch and there is no symmetry. Both of these results are expected.
Elevator influence on the rudder controllability may be seen by comparing
Figure 3.25 (6a=15°, se=0°) with Figure 3.26 (éa=15°, se=7.3°) and
Figure 3.27 (6a=15°, Se=-11°). These surfaces again give evidence of
the richness of nonlinearities and hysteresis-type behavior, with several
different kinds of equilibria over the control regime. The aileron effect
on rudder may also be noted by comparing Figure 3.25, for which se=0° and
sa =15°, with Figure 3.15, for which ée=0° and 5a=0°. There is some
change, although not to the degree shown by the elevator, revealed further by
a comparison of Figure 3.26 (6e=7.3°) with Figure 3.25 (5e=0°) especially
in a and p. To say that &r has nonlinear influence on p is an understate-

ment, after inspecting Figure 3.26. Figure 3.27, where ée=-11° and

Vv e —
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6a = 15°, is most unusual because the curves close upon themselves as
rudder is varied. The geometry is more evident by comparing Figure 3.27
with Figure 3.28. In the latter, &r=0°, 8a=15° and &e varies, so that
it is "orthogonal" to Figure 3.27. The line E-E' represents the plane
depicted by Figure 3.27; conversely, the line D-D' in Figure 3.27 is in
the plane depicted by Figure 3.28.

The equilibrium surfaces presented in this section were shown to
provide a feel for the great variety of behavior which is possible in
these high-a regimes. One can begin to understand, with particular ref-
erence to the time history results shown in Fig. 3.29, and its relevant
equilibrium surfaces shown in Figs. 3.24 and 3.26, that in certain regions
the smallest change in starting conditions can result in widely divergent
results.

3.3.3 Wing Rock Motions

Wing rock has been mentioned briefly in discussing the aircraft F
time history presented in Figure 3.11, Section 3.3.1. This particular
phenomenon arises as the result of developing instability of airflow
over the wings, a consequence of a approaching its stall value. The
main feature of wing rock is pronounced roll oscillations whose ampli-
tude increases at least through stall, and which usually couple into
yaw and pitch oscillations. The coupling effects are due to the high-a
nature of the motion. In fact, the rolling effects so prominent in wing
rock are the result primarily of the elevator control actions. This basic
longitudinal-lateral coupling is a main feature of high-a dynamics.
Figure 3.10 demonstrates this coupling of Se deflections into the lateral
dynamics (p,r), and should be referred to in examining the results shown

in Figure 3.11.
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Figure 3.11a shows a pre-stall buffeting which has only traces of
lateral oscillation. Aileron and rudder are fixed in the neutral position
for Figure 3.11, and the initial state is in trim. As can be seen, velocity
is allowed to vary in 3.11a and 3.11b--the aircraft is effectively in a free-fall
state--and this causes damping in the more prominent longitudinal oscilla-
tions. In Figure 3.11b, the damping is enhanced by changing the elevator
control sequence. Here, Sa is set and held at -15° after 20 seconds.
However, if a thrust schedule is introduced which maintains V constant,
the e control sequence which was used in Figure 3.1la produces very dif-
ferent results, as can be seen in Figure 3.11c. In this figure, the roll
rate oscillations become very severe, and they induce strong pitch oscillations
as well, This pronounced 1imit cycle behavior is predicted by Figure 3.10,
which was generated assuming constant velocity.

3.3.4 Post-Stall Gyrations

It is seen from inspection of the global equilibrium surfaces (e.g.,
Figure 3.9), which show both spin and non-spin regimes, that there is a
basic barrier between these two regimes. This is due physically, in part,
to the great changes which occur in the state of the vehicle as it under-
goes transition from trim to spin conditions. The velocity vector changes
approximately 90°, from roughly horizontal to vertical (and down); angle-
of-attack similarly undergoes very large changes. Time history runs to
be shown (Section 3.3.5 and 3.4) indicate that if the initial conditions are
close to either those of stable, developed flat spin or of trim--and the
controls are set to values representative of these two conditions--then

the ensuing motions will stay in these regions and are stable. The spin

PR SN
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motion shows a well-developed spiral, with constant vertical velocity.

pitch, roll and angle-of-attack (for an aircraft in "flat" spin, the equi-
librium pitch angle magnitude is typically no larger than about 15°; thus,

the aircraft is spiraling down "on its belly" with substantial yaw rate}. But
as Fig. 3.9 shows, if the controls move from trim (Point D) towards spin set-
tings (Point A), then the motions indicative of stable, developed flat spin may
not result since limit cycle regimes with large domains of attraction exist
around Point B. Physically, it is known that once a exceeds its stall value,
the aircraft becomes subject to vio]ent‘osci11atory motions indicative of

the loss-of-1ift condition attendant witﬁ flow separation at high-a.

These motions are called post-stall gyrations, and if there is any kind

of equilibrium associated with them, it is most certainly not a stable
equilibrium point. Once the controls move to values where high-a non-
linearities predominate, Hopf Bifurcations are seen to occur and only limit
cycle equilibria exist. And, as stated earlier, to move from a limit

cycle solution to a stable equilibrium point typically requires special
sequencing of control changes. At least this is the case with the air-

craft F model as defined and described in this report. It is easy to
sequence the controls so that aircraft F enters an inadvertent spin-like
condition; however, this spin is usually not the smooth, flat spin located

at Point A in Figure 3.9. The entered spin is predominantly oscillatory,

and a steep or intermediate spin which corresponds to a location not on an
equilibrium surface since they are all unstable in this region, but one evolv-

ing from the intermediate region of the post-stall gyration governed by limit

cycle (L) branches. This region is basically located between the spin and non-spin
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regions and is featured by a family of limit cycles. It is not clear

whether these limit cycles should be designated as "spin motions" or

high-a post-stall gyrations, as they cover a broad range of o values (see Fig. 3.9b).
A spin entry run is presented in Figure 3.29. In this run, the

controls were initially at trim; then Se was set to -10° at 20 sec, &r to

-29° at 40 seconds and Sa to 15° at t=45 seconds. The results are consistent

with what has been discussed above. The pitch-up action, pulling back

on the stick,causes stall; thereupon lateral control inputs trigger the

gyrational 1imit cycle behavior.

A similar run is shown in Figure 3.30 . Here, the trajectory begins
with trim conditions, but 8a is stepped to 15° and e to -11°, and held
(rudder remains momentarily at 0°). The initial conditions correspond to
the S-segment of the equilibrium surface shown in Figure 3.27. As &r is
then varied in steps to 14°, this induces the oscillatory behavior shown
in Figure 3.30. The mean value of o indicates that an intermediate spin
has been achieved (r is also high, with q very small, proportionally). A
spiral of sorts has most likely developed, as the number of turns (the
plot variable TURNS) is increasing at a steady rate (small oscillations
superimposed), and XNORTH and YEAST are approaching a steady-state mean
value, with oscillation. Finally, a rough comparison of mean values of

r and w indicates that most of the angular motion is in yaw.

3.3.5 Spin Equilibrium Surfaces

A more complete study of spin equilibrium surfaces will be given in

Sec. 3.4, so many of the relevant equilibrium surfaces will be shown there.
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The figures presented in this section have the feature that they were
generated using the full eighth-order spin dynamic system, in which gravity
effects are included (pitch-roll coupling) and velocity is allowed to vary.
Figure 3.31 shows the r and « vs. 8a surfaces for a left pro-spin control

setting, de=0°, &r=28.3° (the combination S8a < 0° and &r> 0° produces nega-

tive yaw rate). The shape of these curves is seen to be quite similar to the
surface generated in the right pro-spin control region (see Figure 3.34).
Later, when the non-spin system is used to generate the spin equilibrium
surfaces, it will be seen that this shape persists, although the numerical
results differ. Figure 3.32 shows that the absolute variation of V is small \
(about 6%), so that there is justification in assuming V constant. A surface
projected onto the r-axis is presented in Figure 3.33, in which &r is the in-
dependent control and 6a=-15°, se=0° (left pro-spin controls). Noting
again the common shape vis-a-vis Figure 3.31, the sa plot, and the fact
that the right pro-spin control region possesses the same type of mani-
fold, the right and left pro-spin manifolds are presented over the &a-ér
plane as shown in Figure 3.34. Manifold A represents the right pro-spin
manifold (surface) and Manifold B represents the left pro-spin manifold. Non-spin
equilibrium surfaces are not shown in this figure; they would be centered
about the origin and would not be in contact with either spin manifold.
While aircraft F possesses symmetry to the extent displayed by the
presence of two spin manifolds of similar shape, it will be noted that the
left pro-spin branches presented in this section do not possess stable segments,
whereas the right pro-spin branches, shown in Sec. 3.4, do. This is a

reflection of the asymmetry of the aerodynamic data which is used by the model.
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3.3.6 Spin Entry Time Histories

Given that a stabie, developed spin equilibrium manifold exists (for
right pro-spin controls), the problem of reaching this manifold from
non-spin flight conditions remains to be considered. As discussed earlier,
there exists a large intermediate region between the clearly-defined spin
region and the non-spin region. It corresponds to the flight regime which
is often categorized "post-stall gyrations." The aircraft motion in
this regime sometimes appears chaotic, with large oscillations of often-
jrregular frequency but is mostly of a limit cycle type. We will charac-
terize this region as a limit cycle region based on such results as pre-
sented in Figure 3.9. It effectively acts as a barrier to a sudden jump
from trim to spin conditions or vice versa. The time histories presented
in this section show this behavior, and they further indicate that a large
segment of this intermediate, 1imit cycle region is characterized by
motions normally designated as oscillatory spin. Furthermore, it is
usually steep (a=~55°) or intermediate (a =70°) in nature, based on the
mean value of angle-of-attack.

Figure 3.35 presents a case in which the controls are moved from neutral
to Scpyy at t=2 seconds. (The initial flight condition is trim. Scppy
is defined at the beginning of Sec. 3.3.) If the spin manifolds were as
simple, relatively, as those of the roll departure region, say, then one would
expect to see entry into developed spin. This does not happen, however. There
is clearly a post-stall condition, but yaw rate does not reach the required level

(about 100°/sec), and generally the energy interchange maintains a somewhat chaotic
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post-stall gyration. In this run, velocity was allowed to vary. If, however,
V is fixed to the value corresponding to the stable segment of the equilibrium ‘ |
spin manifold for the control set §SPIN (V = 443 fps), then the rerun of the
above trajectory produces a more uniform transient oscillatory behavior which
decays somewhat towards a mildly oscillatory spin condition (Figure 3.36 ).
This example points out that the role of thrust in spin entry studies must
receive more attention. By forcing V =0 we are effectively maintaining
thrust at a level which exactly opposes aerodynamic drag. This becomes
physically unrealistic, however, in simulations where a and B undergo dramatic
variations, as happens here; this means that the thrust direction is fluctuating
wildly, as well as thrust magnitude.

The maneuver discussed with regards to Fig. 3.12 and 3.13 may also
be considered as a spin entry sequence. Fig. 3.37 shows a variation of

this maneuver in which the rudder takes the place of the aileron as the

lateral control during the maneuver. As previously mentioned, the rudder
plays a more critical role in converting post-stall motion into spin
entry and subsequent spin motion, and Fig. 3.37 shows that an oscillatory,
left pro-spin is induced by maintaining Sr at 10° while the elevator is
stepped from 0° to -14° in 2 second intervals, 2° at a time from t=0. It
is not in this case necessary to step de in sequences to -14° to show this
effect, but we have done so here and in other instances to observe the
effect of intermediate control values. However, more care is needed in
general with large control changes, as unwanted jump phenomena may occur,
placing the motion in a different region than desired.

The following runs present variations on the run depicted in Fig. 3.36.

In these runs, the control sequencing for spin entry was made more realistic:
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Se=-21° from t =0 sec; Sr changed from 0° to -25° at t=2 sec; and Sa
changed from 0° to 15° at t=6 sec. In addition V was fixed at 443 fps for
all runs and the trajectory begins from trim conditions, as does the case
shown in Fig. 3.36. The run shown in Fig. 3.38 is exactly similar

to the Figure 3.36 case, except for the difference in control sequencing
mentioned above. Comparison shows that the final, oscillatory state is
quite similar.

Following the example of Bihrle (1976), the next runs show the effect
of changing the initial roll angle from a trim value to a number such as
60°. Figure 3.39 shows that, again, the only significant differunce is in
the transient region, which lasts about 20 seconds. If initial pitch angle
is changed to -50° in addition, Figure 3.40, the ensuing motion is sub-
stantially different. Yaw rate does not achieve the same value, and neither
does angle-of-attack. These results indicate that more study of the
effects of changing the initial state would be desirable. As an eventual
goal, methods for determining the domains of attraction of all stable

equilibria (points and 1imit cycles) should be developed.

3.4 Developed Spin Motion

It has been mentioned earlier that the task of effecting transition
from non-spin to stable, flat spin equilibrium requires passing through
a highly chaotic and oscillatory intermediate region of post-stall gy-
rations, It is consequently much easier to study spin behavior by
making time history runs whose initial conditions correspond to
(xgprne8spry)- If the trajectory begins at

*
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!SPIN = (p,er:a,BsV,9,¢)
(30,-4,100,73.5,-3,443,-16.6,-2.29)

and

8 = Ssprn

= (&a,8e,8r) = (15,-21,-25)

(a1l angular terms in degrees, V in fps), the ensuing spin motion is very
smooth, as indicated by Figure 3.41. This figure shows the horizontal
trace of the vehicle center of mass, and the altitude variation for the
initial conditions described above. These conditions are in the middle

of the stable spin equilibrium branch, Point A of Figure 3.42. At t =15
seconds, S8r is changed to -29°, so that a jump occurs to the upper limit
cycle branch, Point B. The only apparent result of this &r change in Fig-
ure 3.41 is a slight tightening of the spiral, although yaw rate increases
more dramatically. Figure 3.43, which time-shifts the &r change to -29° at
t =0, does confirm the growth to a 1imit cycle condition.

From Figure 3.41 it can be observed that the equilibrium flat spin for
aircraft F generates a very tight spiral which slowly drifts to the right,
due to asymmetries in the aerodynamic data. Also, it can be seen that the
rate of descent is constant. Additionally, although it is not shown here,
the state variables remain constant for &r=-25°, and exhibit well-damped ;

transient behavior to new steady state values when &r is changed to -29°.

B ]

Virtually all of the vehicle's velocity in this condition is vertical and
the aircraft's orientation with respect to the horizon is almost "flat" (
(6 =-16° ¢ = -3°), with a very high yaw rate (about 100 degrees per second).

The following sections discuss these and similar results in more detail.

¥ ommg
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3.4.1 Equilibrium Surfaces in the Developed Spin Region

The typical spin equilibrium curve is seen in Figure 3.42. In this
figure, &r is varied while 8a = 15° and Se = -21° and V is fixed at 443 fps.
A very similar curve is shown in Figure 3.44. Here, Se = 0° but that is
the only difference from Figure 3.42. Obviously, the elevator has little
effect on this particular type of spin motion. Both of these surfaces were
generated using the non-spin equilibrium set, neglecting gravity.

Choosing &r = -25°, the projection along éa is shown for a in Figure 3.45.
Again, V=443, se=0° and the non-spin set (which neglects gravity) is
used. If Se is changed to -21°, the o vs. 6a branch shown in Figure 3.46
resuits.

Finally, a composite of all of the relevant equilibrium points, for all
relevant control states, ijs projected onto the (r-a) plane (Fig. 3.47). These
variables are the most significant ones in terms of analyzing spin motion.

Very noticeable is the "gap" between the non-spin and spin regions.

3.4.2 Importance of Assumptions Concerning Spin Equilibria; Comparisons

In this section the significance and validity of some of the assumptions
relevant to generating the spin region equilibrium surfaces is discussed.
This is done mainly by means of comparison of various effects.

Une result mentioned in the last section is that, once the aircraft
is in the stable flat spin condition, elevator controllability becomes
negligible. This ié readily seen by comparing Figure 3.42, where

ée = -21°, with Figure 3.44 where 6e = 0°. Figure 3.48 shows the
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small effect of Se in this spin equilibrium region. Only roll rate is '
moderately affected as Se takes values of 0°, -11° and -21°; and angle-

of-attack, surprisingly, is effectively unchanged. A possible explanation

is the large value of local sideslip at the elevator locations, generated

by the large steady yaw rate. Notice that V=600 in this figure.

0f somewhat more importance, however, is the validity of the assumptions
of fixing velocity and neglecting gravity effects in the spin region. If
this assumption can be accepted as valid for initial phases of analysis of
spin motion, then spin region equilibrium and bifurcation surfaces can be
generated by the simpler 5 DOF non-spin system of equations. Figure 3.49
shows that, at least for aircraft F in the flat spin region,
the simplifying assumption V = const, g = 0 may be used for initial spin
analyses. In fact, changing the velocity is seen to produce greater dif-
ferences than neglecting gravity. In this figure, da = 15° and e = -21°;
also, the g # 0 branch, because it was run using the full spin system,
does not have associated with it a constant velocity. However, as
Figure 3.32 shows, the V range is only about 20 fps. Another surprising
result is the total insensitivity of angle-of-attack to these changes.

A conclusion to be drawn from this comparison is that, for flat
developed spin using the aircraft F mode],.since pitch angle is small
(about 15°) and o = 90°, the term cos a sin 6, which couples gravity into
the a-equation, is quite small. Furthermore, gravity does not directly
couple into the p and r equations, as does V (through dynamic pressure and

by influencing the aerodynamic coefficients).
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Another observation of practical significance is that only one consis-
tent set of assumptions is needed in order to generate a truly global
equilibrium surface, examples of which are shown in Figs. 3.9, 3.50 and
3.51. One needs only to choose a "reasonable" value for V in order to
generate these figures with the easier non-spin equations. Notice that
it is not possible--and we did make simulation runs to verify this--to
use the spin equations, with nonzero gravity, to produce equilibrium mani-
folds in non-spin regions; roll and pitch angles, which must be included

in this system, have no equilibrium values in most non-spin regions.
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3.5 Spin Recovery and Prevention

In terms of the concepts employed by BACTM to analyze aircraft
behavior, it is possible to state the goal of spin recovery as follows:
spin recovery is achieved by control sequences which move the equilibrium
point from a stable spin region to either an unstable spin equilibrium
paint or a point on a non-spin equilibrium branch, stable or unstable, from
which other control actions can produce trim conditions. A jump from one
stable equilibrium to another in the spin regime is undesirable.

With regard to prevention of spin situations, it will be seen that
the rudder is the most sensitive aerosurface control for aircraft F, in
terms of spin entry. The aileron also has considerable influence, but
with this particular model, rudder influence predominates. In view of
this, high-speed/large-attitude-change maneuvers which require large
elevator and aileron deflections (e.g., a rolling pull-up maneuver) be-
come very prone to spin-entry situations unless use of the rudder is
carefully controlled.

The next section deals with some of the aspects of spin recovery,
based on BACTM analysis using aircraft F, and the following section will

cover aspects of spin prevention.

3.5.1 Spin Recovery with Aircraft F

For aircraft F, a right pro-spin control setting of (8a,de,dr)=(15°,-21°,-25°)
designated §SPIN’ represents the "spin control setting." This setting,
along with the proper values of the state variables, XSpIN® results in a
flat, equilibrium spin. See Point A in Fig. 3.42. The magnitude and sign

sense of the controls §SPIN is very representative of similar spin settings
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of other aircraft; the elevator (se) is large and negative, to provide the
high o needed for stall and subsequent spin (although once in stable spin,
the aircraft F equilibrium statg is quite insensitive to elevator control
actions--see Figure 3.48); the aileron (8a) is at its extreme setting,

of opposite sign to the rudder (ér); and the large negative rudder
generates the high positive yaw rate which signifies the development

of spin behavior following post-stall gyrations. The aileron is of
opposite sign in a spin setting because of the effect of adverse yaw

due to the aileron; that is, for a positive yaw rate (sr<0), a negative

roll rate (8a>0) induces a positive yaw moment, thereby enhancing the yaw
rate. In a coordinated.turn, both Sa and Sr have the same sign, and yaw rate
(r)is predominantly sensitive only to ér. Proper sequencing of controls for
spin entry is important, because hysteresis effects are especially pro-
minent in these high-. regions. For example, the elevator is a much more
effective control for spin entry when it is applied while sideslip (8) is
still small in magnitude. This is consistent with the usual circumstance
of spin following a stall; and the elevator typically induces stall be-
cause of its direct influence on angle-of-attack. See Fig. 3.10. Further-
more, elevator control effectiveness is practically nonexistent for high
values of 8.

When a significant yaw rate is added to post-stall motions, and when
angle-of-attack (a) approaches values for which autorotation in yaw is

possible (i.e., Cnr 0), then entry into spin will most 1ikely result. For

e —— . W e emma— -
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aircraft F, an 0 around o =65°. Spin may be considered a form of auto-
rotational yawing. This is a condition marked by a general ineffective-
ness of the lateral controls. However, by using the equilibrium surfaces,
recovery control sequences can be developed.

The standard method for spin recovery is to rapidly proceed to an anti-
spin setting--i.e., for our example, this would involve zeroing the elevator
and fixing &r and Sa at their opposite extremes. This and similar techniques
based on aerosurface control actions alone are not always effective, and air-
craft are often equipped with special thrusters and drag parachutes for spin
recovery purposes. However, it is possible to effect recovery from spin with
the aircraft F model, and Fig. 3.9 indicates how this may be done.* This fig-
ure shows the equilibrium surfaces for sa=15°, 8e=0°, V=600 and g=0.

From the spin state, the elevator is returned to the neutral position;
this corresponds to point A in Fig. 3.9 . Then, the rudder is increased
from -25° to at least 15°. This will induce two jumps, the first one to
a limit cycle around point B, and the second to a limit cycle around
point C on the lower branch. Then ér may be decreased to 0° (point D),
as this last equilibrium branch passes through small values for o and r.

These control actions must be taken over a long enough period to allow the

transient motions to die out. Point D in Fig. 3.9 corresponds to point D in

Fig. 3.16, which is an equilibrium surface showing the final recovery sequence:

roll rate p is reduced by returning the aileron to its neutral setting. Note that it
jnvolves a control effort {change in rudder from one extreme setting to the

other) which is used in practice for spin recovery. Again, the equilibrium

surfaces generated by BACTM tend to confirm previous results and past

*There are other possibilities which we shall try to investigate at a later
time, with more comprehensive models, such as the F-4,

L
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experience, while at the same time pointing out alternative possibilities
(which we expect to explore in more detail at a later time). A further
characterization of the limit cycle behavior is reauired for obtaining op-
timal recovery procedures. This is because more information needed about
the 1imit cycle domains of attraction in the sensitive intermediate-a
region (25° sas65°), Eventually, a complete calculation of the bifurca-
tion surfaces (both Hopf and elementary) should be done for spin recovery

control design.

Another possibility for a spin recovery strategy "leading with sa" is
presented in Fig. 3.50. Here, Sa is reduced from 15° so that a jump occurs,
to a limit cycle condition around point B from point A (the latter point is
the same point A in Fig. 3.9). This jump will actually increase p, the roll
rate, but this is a desirable method of rolling the aircraft into the
airflow, which reduces o, as can be seen. The final step, then, is to
reduce &r in magnitude to its neutral setting, and Fig. 3.15 shows that
this returns (r,a,p) to trim values. Similarly, time history runs confirm
this. As with Fig., 3.9, Fig. 3.50 represents equilibrium conditions
for se=0°, V=600 fps and g=0.

It should be recognized that excessive application of the "anti-spin"
control actions, in attempting to effect spin recovery, can lead to a
"reverse spin" situation if the controls are not moved towards neutral
quickly enough. A common method of spin recovery is to oscillate the
controls, particularly sa and ér, back and forth between their limits. The
frequency of the oscillations is usually determined by visual cues avail-

able to the pilot, in conjunction with the autopilot. Fig. 3.51 shows a
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spin reversal situation. At 42 seconds, the controls were changed from

right pro-spin (sa,de,ér) = (15°,-21°,-30°), to left pro-spin, (-15°,-21°,30°).
It can be seen that, within 5 or 6 seconds, the yaw rate has changed

sign but not magnitude, and the basic spin condition remains otherwise

unaffected.
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3.6 Explanation of Spin Behavior of Aircraft F

As with other aircraft analyzed in the literature for spin behavior,
the main feature of aircraft F in developed spin is an extremely high
angle-of-attack and persistent, steady yaw rate. The presence of these
conditions simultaneously, without major fluctuation between high and low
values of r and a, indicates the spin condition. Once the aircraft has
been maneuvered into a stall condition, both the equilibrium surfaces and
the time history simulations indicate that wild, oscillatory post-stall
oscillations and gyrations result. The aircraft has entered a flight
regime lacking in stable equilibrium points; if the lateral controls have

been set to "pro-spin" positions just prior to or at the onset of stall,

then the yawing motion will predominate the post-stall dynamics. If inertia

coupling and aerodynamic forces and moments are then phased together so
that the values of angle-of-attack and sideslip generate negligible yaw-
moment coefficient, Cn’ then the yawing motion will become autorotational.
For aircraft F, this will occur when o is about 70° and B is within +10°.
In a "pro-spin” control setting, the aileron is moved in the opposite
sense to the rudder, and both controls are typically at or close to their
extreme values. Thus if aileron is positive, for negative roll rate, but
the rudder is negative, the positive yaw rate generated by the rudder
will be enhanced by the adverse aileron yaw.

The transition dynamics from trim condition to spin equilibrium for
aircraft F involves limit cycle oscillations. A thorough analysis of the

generation and interplay of the aerodynamic, inertial and gravitational
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forces and moments is not merited for this model, since aerodynamic data were
developed in order to simulate full spin motion. However, it is felt that
post stall gyrations produced by the model are similar, in general,
to what is actually experienced in flight tests of military aircraft.
The model limitations and open-loop nature of the simulation make complete
transition from trim conditions, controls neutral, to stable, developed spin
a very difficult task. The equilibrium surfaces are useful starting points,
but in regions where stable branches are nonexistent, they cannot predict
easily the nature of the motion to be encountered in that region. Thus, an ]
exhaustive series of runs would be required in order to proceed completely |
from trim to spin. However, we have been able to show that by making two runs, f
one with initial conditions at (§SPIN’§SPIN) and the other at trim, that
respective control sequences may be chosen, using the information provided
by the equilibrium surfaces, so as to bring them to a common final state.
Fig. 3.52 shows a trajectory which began in a spin condition. At 0.5 seconds,
the rudder was changed from -25° to 25°, and 8a changed from 15° initially to
7.5° (t = 20 seconds) and 0° at 30 seconds. The resulting oscillatory spin
matches very closely the final condition of the trajectory shown in Fig. 3.53,

which began in trim and had the following control sequence:

time Sa Se ér
(seconds) (degrees)
0 15 -1 0
2. 15 -1 1.5
. 15 -1 7.0 j
30. 15 -1 11.3 ’
40 15 -1 14.0 .
50 5 -1 1.3 1
60. 15 0. 25.
70. 0. 0. 25. ]
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This is an important result in that it does show that the model produces
motions that proceed from trim to spin and vice versa. As the equilibrium
surfaces show, there exist several attractors (both points and orbits) and
their associated domains of attraction which make it very difficult to
effect excursions in the state-control space. We have effectively com-
bined two runs which take advantage of more favorabie equilibrium struc-
tures in their respective starting regions and brought them to a common
point. From this point, completely new control sequences must be used in
order to-return to either starting point. The composite equilibrium sur-
faces shown in Fig. 3.9 and 3.50, for 8e=0°, show that the jump form the
spin condition to highly oscillatory regions is much easier than going
in the reverse direction. Here, it can be seen that the jump is to a
limit cycle surface in the (éa,ér) plane. Once the jump occurs, elevator
controllability becomes more prominent, as can be seen by comparing Fig. 3.9
with Fig. 3.54, which has se=-11°. The elevator change does not appre-
ciably affect the shape of the spin equilibrium branch, but greatly changes
the non-spin branch.

The ease with which one can move from one point to the other along
the equilibrium surfaces is influenced greatly, as mentioned above, by the
structural stability properties of these surfaces in control space. An-
other related factor is the location of the attractors in this space and
the various "domains of attraction.” Based on our results, it seems that
the domain of attraction for the stable segment of the spin equilibrium
branch is much smaller than neighboring domains of attraction of limit
cycles. This necessitates precision control sequencing, sensitively

attuned to the current state, in order to achieve stable spin.

C N et e e e
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g ue




DE= 0.0
DOR= -25.0 151
I S 0 LuuuU J LULU 0 LLUUU
u E UUUUUU K LUUUU R LLUUUU
L F UUUUuUY M LUUUUU X LLLU
A UU G UUUYUULY N LUUUUUU Y LLLUU
' B UUU H LU 0 LLU Z LLLL
8 C uyuy 1 Luu P LLUU
I
| o
Q
w4
‘ r~
o
Q
ol
w
o
] o
QT
: O L
o L L L L L L L
. Q L L L
i 8T Lk
i
|
. [en]
Q
. v+
i
8. " L L o 1 d
C’ L) l‘ T‘ T T -3
-18.00 -12.00 -E. 0 cLC0 A0 12.0f 12.00

DA
Figure 3.22(b) (cont.)




DE= .
OR=
S
U
L
A U
B UUU
8 © uuw
[ I
(0]
o
<Q
wn 4
t\
g‘;
e
O 4
w0
o
Q
4+
-

0.0
-25.0
152 ’
D ULUUUU J LuuY Q@ LLULU
E uuuuuy K LuuLu R LLUUUU
F Uuuuuuy M Luuuuu X LLLU
G Juuuuuud N Luuuusuu Y LLLUU
H LU 0 LLY 7 LLLL
I LUU P LLUU

[wn)

O. \
[ea 3 8 n
m

o

e

Wr

8- . J - } L i

cLl@-OO -12.00 -€.00 0.00 6.00 12.00 12.00

OA

Figure 3.22(c) (concluded)




q TodLoua JoLas Lotiloe
u NN N 153« ool PoLdoee
L Tddleeas Mol eeo £ LLd
< Todoudddoe MoLJoodd Y L o
[T - o oo N L
P A ] v v .
8 { woee Toltod LA O R
.
&~
]
I
!
Q
Q|
.
8.—&
|
*"“‘.""‘L'L“L‘k"""""‘L'L‘“"‘“"‘lﬂ“""uhH‘JkL‘ldt4l4l‘l‘._k‘."_

30.00

4 D .

T
-15.0° ~10. 00 -3.00 0.00 5.00 10.00

FIGURE 3.23
Equilibrium Surface: r vs. &a
6e =10.3°, sr=-25°, V=600 fps, g=0

S W } U U WU




———— —— —

DE= -11.0

DR= 13.0 154

S 0 Uuuuu J Luyuy @ LLuuy

U E yuuuuu K LUUUU R LLuyuu

L Fuuuuuyy M Lyuuuy X tLLy

A Uu G uuuyuuuy N Lyyuuyuy Y LLLuy

B UuU H LU 0 LLu Z LLLL
8 C yuuu I LUU P LLUU
O.~r-
w0
(]
=}
4
<t
o
&
O 4
) f
o (
(e8]
o1
8 A A A A A A A
ol el }
(\'j....

i

[}
Q
[ome)]
S+
o
=
3 4 : e : 4 4
'-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00

OR

Figure 3.24(a) !

Equilibrium Surface: r,a,p vs. 8a
V=600 fps, g=0 {

- ———— -~--—-~—1-. e e e ey —— o p——— e ———————————————




——

m—

36.00

.00

o
("')-1

12.00 18.00 24.00

6.00

0.00

S

DE=
OR=

S
u
L
A U
B
C

_11 -O
13.0

—~IOTMMD

uuu
uuy
uuuy
uuy

155
uu J LUUU Q
vuu K LUUUU R
uuuy M Luuuuu X
uuuuy N LULUuuY Y
c LLU z

P LLUU

LLUUY
LLUULY
LLLY
LLLUU
LLLL

|

15.00

-10.00

} } i |
L T

-5.00 0.00 5.00

DA
Figure 3.24(b) (cont.)

10.00 15.00

b




DE=

-11.0

156

DR=  13.0
S D Uuuuu J LUUU Q LLuuuy
u E uuubuuu K LUUUU R LLUUULU
L F uuuuuuy M LUUUUU X LLLU
A UU G uuuuuuuy N LUUUUUU Y LLLUU
B UUU H LU G LLY Z LLLL

8 C uuuy [ LUy P LLUU

Sor

w

o

<

O 4

<

]

Q

o4

[§N]

(]

<

3]

Q—D

<

S

A

LiLa A A A A A A A A

Q

Q

o

<t 4

|

(o=}

<

]

@ t % — t ¢

-15.00 -10.00 -5.00 0.00 5.00 10.00

DR

Figure 3.24(c) (concluded)

15.00

¢ ——y

L —y

- )

o reeae




B y

[

) C Guddo 157 D I Tobi g
o L UJdddou ORI Pl 1oo.
L T Uddd s Mol < ULL
S (- Uduwsosoag N gL Lu R
B Luu koL T Lt
8 =il VoL Pl
g.l-iL.L.LL.LLLLLLLLLELLLLL'.L'LLLLL'Ll.LLLLi.LiLLL
._,'JJU
g o
Q+ LY
N
- J
J-J
-4
]
-
o 7
Q S
nd o
- .J-‘
J
J
. JJ
PRV
H'*
T L L
o) S I
¥ 554
55,
3.3'5
° ]
S
\n &
Y o— 3
| ' 3.
’)
L
L L '
"l
8 L
$d.
. L
' LLL
L, ‘
L
(=]
e
\n
7-‘» N VSt Sy = f—-- —+ 1
~30.00 -20.00 -10.00 0.00 10.00 20.00
FIGURE 3.25(a)
Equilibrium Surface: r,a,p vs. ér

sa=15°, se=0°, V=600 fps, 9=0




- i : Doty
S - Jdaduo 158 P " tdo ,
. - ; N v N TR
< . JJdduo ‘ ' y d
T Udeudae . L ;
' UJ y teo P L O S
c |'_J (' [STRN R S R ., - .L
FoC. b ‘ .
8 C owdos Uy .
L d
8
l
;:L Ly Gl .
[} ~ L L [S L 1 L ll '. L i L L '.
.
g L
2
&K ‘
ot ! !
.o L
8 ; .
- L
- - ]
v‘b P
J
N y [
-~J L
.J L
I\J L
Y {
y {
8 y |
@ J L
b ,
- 5
| g .
| - ' ’
-
9 )
[~3 J .
© J K
N ‘.4' .
=~ | ;
1 ‘J‘ ,'_‘
J g
I 3
' " r;. ‘
{ 3
Q| ~
Q,_ U}A Ssv
" X
©7 _ '
! 4 -2 b
! ! 5502
| el L pi Lt f
] |
8 | 4 —_— '
" +_ e e .l.___ —_— e
[

-20.00  -10.00 20.00

DR
FIGURE 3.25(b) (cont.)

0.00

b .

? -~

o el e




Assvitad: —— —_—— s —— Romned B
o .OO mow 60-00 m'w

"30 . 00

M panamep [T

-6D .00

—4

"

—

S TodGddd 9 JoLoas TVl iag
; 159 .

< L o UJdiudd { NN il

L voUJduadded [ IS £ 'L

8 ul { Uoudddow N oL dgdaLua Tl g

C Cag o ISR Lt

C ~auJ Fotas Pt

cpbtbbbes
Lot

AJJ\JJJJJ\J’J«;JJJ.J.;JJJ

. J d
g
S
»
J
4
o~
.UJ
“
1.".
“
4
4
4
1+
h\l
L
L
L,
L
Y
L
b
L L
LLL
Ly
) fnd
2
3~
Y
3.
e
3
S,
3
’Sr
3

FIGURE 3.25(c) (concluded)




S o

e v ¢
SRSV o S I duu

1 M v [ .
VI oo
LLLG

Pltda

tLLt

AR r! P .
Vuuwuu Loeduwu

Jduuuwuuu N Ldduouuu

P ~< X

e oored

Lau P Ltue

[RELI s Kl S
-
c:

—~ LY N Q)

4]

[

o L

o4 |
Yl

o J

0+ ¥

G
‘Jf‘““c‘(‘

30.

re

S

=0
4

+
s

1O e
LU BRI 2 3

It

H

P
- !
Frluudd ey g ey

! S U SRS S

quHuuEEUHGYU

—— s

=36 o0 -20 .05 -SC

e d
CY
'
[N
(o]
(%)
(S

L, ne 2000 100G
“ L

e
GR

FIGURE 3.26(a)
Equilibrium Surface: r,a,p vs. ér
sa=15°, se=7.3°, V=600 fps, =0

o~

<Y
(Wnl

Cu

o0y v d

TR et
A e -




161

g S ddudd PRI N N
o L Udduuu LN R oLtdude

) L f Uddusiu " e X LL
rodd b Udduusuu NOieeedd YLl
5 Ulu =L FAN S FA
{ Ldiu ™ P il

V200

4+

X

— - [ ] [ ] a——
joaf
I
+

- )
et 4 i
o A
e
v
P
)
A
e
s
S
o ;Y
[Wp] v
: a
-4 ]
. - .
3 (v}
]
o
4
o]
[
(.-' )
= |
“ ¢
. i
& L.
!
[ -,
. N o}
- .- -
8]
A}
3
4
! .
" '
- 3 -
H )
\_f -
4 | 2,
L .
“ )
a
' v
RN
t '™
! RV

. PR N B
: 1uuuuL.u_.ux.,uuut..ut-l-j‘ﬂ,“."‘.h\..'vuvu“

S o—
, -
S
S

i

!

T T

-

|

)

!

L

+ S U N 4
P e - " o~ ~ o ~m N o,
) (%3 Tod e - 1 ORI J Lty 1 [ AP VIR “J ALY

’ s
FIGURE 3.26(b) (cont.)




) 2 Jduuuu 4 Ldou LolLdog
¥ T Uuboos 162 PR R OLLUCCS
L e Uuuiuuu M Ll euou X oLk
A " G Uduuuuuu N Licuvuowu 7 rLLde
o & Ude Hod cord Z LLt
oy 0 Cdud T Ldy [ N
‘f::)—-r L, SLOL &
- PRS) !
'.J
J “J
g -~
.
(L <
o ‘LLLLLLLL!LLLéukLlLLLUtL
@ QLLnittE SRSV VIGIUIV. S I
Oy L L L Lt Rv;
m“ L e
] ~
e
o <
[ ,u'
o4 RHU
~ TR
oM
G
o
o
oo
ot
| utt
2] o
e oM
[ H [N
| o
I (S
. L)
(1. ! q“‘
i 1 %Y
; bl
I !
< L_H
od o
t W
b
Le
L"*.
30
RS
ce
i
o
2 — ¢ 4 -+ 4
SR 20 46 -10 05 019 1C. 00 2050 S0 ol
LR
FIGURE 3.26(¢) (concluded)
v - rvrpa——e

e ——

——

e a1




Loal 6 LS » B ul GENVA]

15.00

11.00

1.00

3.00
. _-A-_‘._ —_

1.00
¢

et e

B A e . o0 =

0 uuouwu J Lioe 2 lleeo
{ Uuouown 163 LR P otLloce.
i Uuvowou b £ Lttt
Lo G Jouuuowuo N Liduuus LA
Uou H LdJ CotLu 2 oYLt
Lduu 1 Ldg PoLLde
N
o o o u VYo “ u V u'
o <
D .~ =
y o
. o
e [l
v -~
~
“
J
-
(%)
d ~
7
f A
Ul
- o
e r
D'’ ;
4 5
5 5
a 5
L . g,
f
LL L'
L L
L

L Lt
Lieppett

- =
3.00 7.00 ] 11.00 15.00 19.00
D

FIGURE 3.27(a)
Equilibrium Surface: r,a,p vs. &r
sa=15°, se=-11°, V=600 fps, g=0




164

£ C uuuuu J Luuwu o lldou
o : Lovuou A ST r tldvue
L i Uououcu M o locuou X Ly
P oue G Udwuuuuu N Lovuoou Tl
B Guu H Lo ootbd 2 'Lk
3L Ui T Lo PolLdg
v‘xl_.
Cu
VY
Y] 1
C-—%
<2 '
< o)
. hd
J
v
L/L/ /L/
) / /L
<) !
- v
<) L/
4
| / -
[ } / '
oo I
D -
R
i
[ )
o
o u
4 ¢
[P \_,'
1
!
h .
(W) l (J
A
ma
[ . D'
i i
Ls !
L..' }
QX n — ¢ - + $ 4
J ' ~ . - 3 - .-
- 7 .30 11.00 15.350 13.9C 3 J%
DR
i
FIGURE 3.27(b) (cont.) '
t :
1
t v
x i - g Sokilau LA G oo v




FLU

PP
Uuowwu

s

-

o

~d
LLddae
LLLd

(I VRORY]

Uoiouu
u

2
o R
i
- =
>~
R
")

3
-2
1T
N
- —
Z O
")
-J
7)
]
°3
-3 =3
o
[
2
>

TIDONE O (o

P oLt

K PRCTR
Ty 4, TGRS AR

nd

-
1
[Ty
“r
rn..nnn
a
rnﬁ,
— -+
—
—i
—d
-4
- |
-

-
4

|

'

|

-3

i

-

-— N

] '

LLl 4

..JrJ,..
%)
N
A

)r..Sr i
) t
-~ v
= m

|

s S I | - nt
- Oy ey, Y N
(o el 308

(4]
[

™

<)
(3]

r-

3.0C

e,
L

FIGURE 3.27(c) (concluded)




; -
(S 8
PoUou I+
8 O 2dug (
]
™
|
l
o |
<]
0+
&
|
\_IJ
o
8 Ve
2 RS
‘6?1"}' J\J‘J
J
o
J
[}
v
c>} E J’
al !
\Q] -
1 3
Lo
o 4
o
T
! E"ﬁ)g_.
39
I ’ ! ) ") 1
o
o |
- |
L
b
i
i
Q
=3
&T+- N TR

Y
-8.00

EquiTibrium Surface:

166

SRV RV j

Usd tow AU )
Uddao. - ool e
Uuduuduo Nt Jo
oo L.
G oLt
A
N
o
u
oV
J
J
J
o
J
J
QT‘-' \"x..
R -
-0
~ 2
-5
PREES
303

0.00
DE

FIGURE 3.28(a)

rsa,p vs. de

sa=15°, sr=0°, V=600 fps, g=0

~
2}
v
7
P
ul\J”JV“ !
b
S5
-
bl
b
B
3
J
N]
J
J
J
)
v
]
N
J
4
<
v

[V

-

L.
Lt
Ll

ol

8.00

4 A — e e —
‘4000

12.00




24.00

16500

20.00
e B

12.00

— ‘_ﬁ-w‘. N

8.00

R

4.00

+ ..
©.12.00

oot
.
[N

vu\.!.,‘x:_,c

(ORI,
e Uulueu [
oLodu.e s oL L v D
7 U it s b S 2 L
e [

[ R e {
- “ R
- - o v B
-
o io
"N
o
s
M
-
",
B

5 .

5
3 3
) .

o 3
3
5.
3, -
3
b) J
~ ]
-~ o
’ J
3. N
3
.
5 4
“ ‘; ;
3 ~
3 (3 3
ko4 -
I - ~
- L
3 30
- . ~
bl | s
5 >
S kS
3 -3
3 0
,'3 . ¥
) e o
W .
S
~t
o
Jl

167

wado. . : '

OE
FIGURE 3.28(b) (cont.)




168

[

. . B
S e
A\. :
-
-
)
)
]
. bl
- 1 - pl
e i 9
oo c ’
3
v
i)
3
9
Al
.y b
IS ]
2 o
PER ! B ?
3OS Y - v [\ae
> -3 — b e}
P [l
4 [ - 3
5 -
} [Sal
bl L
bl v
B F.)
.u Y
- o
b o
4 r
) - -
S 2, o
4 )
P T2 M
I -
DI - S Ll S mm Tl

p—————] ' )
00" S0¢ 00°59 00'sz  00°Sl-

d

00° S5-

U T
Q0°S6-

‘P o,

Sy
S
-
S 18
n mao
-

- m

(Sa !

» s "
T.”) * lr.w-
o <«
18
...0

L]

o
2
i<
\
| @
- Q

DE

FIGURE 3.28(c) (concluded)




vixig' ) 'THEme%oo‘OJ PHL(X10" )

ACx10' )
.00 3

-18.00 6.00
t -

16?/ / \/*/\/\/\N\N\NW\ N
/

0o

40.00

T TN NN -~
= VAR VARVAVARVAZVARVAA AV

©
0. 7

IP.OO 0.00

B
.33 -30.00

L
W\/UUWUU UUU i

e AL
agT AN V \f NM \\Jh
-2 STV




DR

170
o
Q
(e
-«
8 :
O-J %F, e ———
o
2
=)
¥ — — + — 4 4
0.00 16.00 32.00 48.00 654.00 80.00 96.00
TIME
o
Q
[0 8 '
©
8
o | '—H
[}
Q
8 - + - —+- + y
0.00 16.00 32.00 48.00 64.00 80.00 g96.00
TIME
Q
Q
w4
E2
8 l——_-—r__ﬁ___\_____\———_
ot = i, —
g
"2 .
¥ - 4+ T e T - - i
.00 16.00 32.00 48.00 54.00 80.00 96.00
TIME

Figure 3.30(a)

Time History: Oscillatory Spin Entry
sa=15°, Se=-11°




171

o
S
O+
o~
[ ]
Q
Q—MW ——
— )\, \}
[9%)
m 1
O U
S
& , } — + + :
0.00 16.00 32.00 48.00 64.00 80.00 96.00
TIME
Q
=
O 4
o
o
=
Feot
Q.
—J
(o8}
Q
Ol 4 s 1 ’t 4 4
“h.00 16.00 32.00 48.00 §4.00 80.00 26.00
TIME
o
=
: AJ\AJ\ﬂJ\ﬁJ\ﬂJ\ﬁJ\ﬁJ\ﬂJ\
(=)
=
O 4
(V2]
Q-
8 —d —t 3 4 o |
.00 16.00 32.00 48.00 64.00 80.00 96.00
TIME

Figure 3.30(b) (cont.)

— K

e e T




{t = 0. sec

172

-30.00

0.00

30.00 60.00 90.00

YEAST (X10' )

SRR

— 4—

120.00

16.00

3.0
TIME

48.00 £4.00 80.00

16.00

32.00

48.00 64.00 80.00

TIME

Figure 3.30(c) (concluded)

-
96.00




173

; S D uyuuu J Luuuy 0 LLUUC
] u JELuuyuuy K Luuuu R LLULLL
L F uuuuuuy M LUuuUY X LLLU
A uu G UJUuULUUY N LUuLuuy Y oLtLUU
- B uuu H LU 0 LLU 7 LLLL
- © C Uuw 1 LU P LLUU
O
© & H o | I
IT H *—-HM_H___'H__-_H H
—— “—H\H
\H
L—"
L—""
L—
T L
~
i’ H\H
i \H\
o
. . ol H\H
1 = A
; i H
H
H
; L
i L
.r. L
L
L
H L
i L
[
i 3t L7
] N /L/L’
L/L
7~
J s
> L/
L/
L/
| L
L
= T IV S /,L/’
8{- L/L
< L
/L/
]
8
N + } | t + —
. . -30.00 -25.00 -20.00 -15.00 -10.00 -5.00 0.03
| DA
Figure 3.31(a)
Equilibrium Surface - Spin Regime: VYaw Rate vs. Aileron Deflection
de = 0° sr = 28.3°

R X T Yr— ” T




174

S 0 uyuuy J Luuu 0 LLUuy
U £ UyuLUUY K LUulUu R OLLULLY
L FuuLuuuU M {UULUU X LU
A UU G UUUUUUUU N LULUULY YoLLLy
B Uuu H LU 0 LLY 7 LLut
o C ULy 1 LUy P LLUU
Q
o-
as
S
S —t—l—
\L\L\L\L
~L
L\L\L ,
[
L
L L,
3 L
38 N
S L
e
H/H
H/
/H/
ag H/H
wl /s
~ L\L
\L
\L
\L
H
-
8 H H H____....—H-—-"""‘H—/H
» cpun . H e [}
R i Heem "
(]
Q
U') } S | | 1 J d
w R T T ¥ T 1
-30.00 -25.00 -20.00 -15.00 -10.00 -5.00 Q.00
DA

Figure 3.31(b) (concluded)
Equilibrium Surface - Spin Regime: Angle of Attack vs. Aileron Deflection

se = 0° ér = 28.3°

I—m-w-'— e —— . bl S —y " st G0t ot




175

S 0 uyuuy J LUy @ LLuuy
U E uUuuuuuy K LUuyu R “LUuuULU
L F o uuuuuuy M LUUUuU X LLLU
AR UU G Uuyuuuuy N ( UUUUUU Y oty
o B uuu H LU 0 LU FANRERE
S  C uuul 1 Lo P LLUU
un
N
X
M
—,
™ \H
@ T~
(@] \H
St T
\\H
\H
\H
B \\\\\\H
@ N
<7 L
L//)
(@] /
wn
& L
v" /
/L
k
o “H
[s0]
T \H\H
\H
“\H
N
w H,
- H
31 "
LLL/
L Lt -
o L L
: Ll —t—t—t—L
Sl —toplo oy a : t— !
~-30.00 -25.00 -20.00 -15.00 -10.00 -5.00 0.00

0A

Figure 3.32
Equilibrium Surface - Spin Regime: Velocity vs. Aileron Deflection
se = 0° §r = 28.3°

L I O SO UERNRY




176

s 0 UuuuyY J Luuu 0 LiLuy
u £ UUUUUU K Luuuu R LLUUUY
L FuuuLuLU M LUULUU X Lilu
A uy G uuuUuuLUY N LUUUyUU Y LU LU
o B uuy HoLU C LU 7 LitL
O C Uuuy 1 Luy P oLiUU 1
8 l
v T ¥
H—""
H/‘
H
- L
m L |
: . |
%*- ; |
H/H |
H—"
~ . U/
e u-—""
T y—"
t U/ |
H—""
H/ |
o H/
S |y
ML
TT\
¢ \L
g \L
o \L\
E’3+ L
l \L
\L 1
\L |
~
B "~
= L
. o o » e b o * o @ . e . ."\h‘.. - ® o o v g ¢« o ®
] \L
\L '
™~(
8 \L .
g K
- + e e -t } —+ — '
'-10.00 -3.33 3.33 10.00 16.66 23.33 30.00
UR ]
\
Figure 3.33 l 1
Equilibrium Surface - Spin Regime: Yaw Rate vs. Rudder Def.ection |
da = -15° ée = 0° ( J
I
I
T — — T — T ;




......

177

angle-of-attack (deg.)

(-30°,30°,85°) a
Froo0

(30°,-30°,60°)

40°

Figure 3.34

Equilibrium Manifolds - Spin Regime, Aircraft F

~t»6a
30

Manifold B

or rudder
deflection
(deg.)

Manifold A

aileron
deflection

(deg.)




178
(o]
e
[Tale 8
-
8
o
§r = -25°
& P!
(=]
Q
wn
- — + } + + —
0.00 8.00 16.00 24.00 32.00 40.00 48.00
TIME
[e=]
2
w4
-
8
o
Se=-21°
b b
[}
Q
n
- + } } 4 ! y
0.00 8.00 16.00 24.00 32.00 40.00 48.00
TIME
©
Q
[T, )8
-
P o
fa=15 )
[w]
<Q
(=}
(o n
fan)
8
¢ . ' + + + —
0.00 8.00 16.00  24.00 32.00 40.00 48.00
TIME

Figure 3.35(a)
Time History: Spin Entry

| a— ——

B el e



179

T M ‘ /\/\J\/\/\

o \W v -

S_?0.00 6.00 IE'O%'IME 24.00 32.00 2000 48.00

; A ANAAD AN /u\

IRVLAUAS b

E"éo.oo 800 5. OorIrﬂE 24.00 32.00 400 48.00
KA TR

8

$o .00 8.00 16.00 24.00 22.00 40.00 46.00

TIME

Figure 3.35(b) (cont.)




180

(]

<

~ ) vy

w0
.-D —_\_\\/\/Vfw

>

—_—0

S

&T

-

i

>

8- I - . i 3. y - d
Sh.ao 8.00 16.00 24.00 32.00 40.00 48.00

TIME

(]

S

O 4

b d

8 [\ A/\[\A/\ J/\[\Aj
ol \}\ﬂ\]\/\]\]\/\/\/v\]\j

’-—-

wd

m

(]

Q

?~L—— — +— + —+ + —
0.00 8.00 16.00 24.00 32.00 40.00 48.00

TIME

8

ol

[<2]

[on]

=

Tt

o

-

[an

8‘ L. 4 -3 i —d
“h.00 8.00 16.00 24.00 32.00 40.00 48.00

TIME

Figure 3.35(c) (cont.)

— s —— S




AD=AOB4 921  SCIENTIFIC SYSTEMS INC CAMBRIDGE MA F/76 20/%
GLOBAL STABILITY AND CONTROL ANALYSIS OF AIRCRAFT AT MIGH ANGLE=-ETC(U)
JUN 78 R K MEHRA¢ J V CARROLL Nﬂﬂﬂll-?ﬂ-ﬂ?.ﬂ
UNCLASSIFIED

37”3 . ‘
[ ] |




o &
- K g

l..
gl ¥
“m TR 2
= llLE
23 lie e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF 3TANDARDS [96i-3




Soway
eria oy Summm oo gmy SN _——

———

(x10'

181

4.00

8]

"

S

TUR

8. e —— 4 —4 g

.00 8.00 16.00 24.00 32.00 40.00 48.00
TIME

10.00

|
—
E

v I

PHI
Z
q

[o ]
=
9 i e 4 i . _'
'0.00 8.00 16.00 24.00 32.00 40.00 48.00
TIME
(o)
Q
o4
[+4]
8
Tz
Lo
L
}».
(=)
=
B ' vas + ¢ - —
0.00 8.00 16.00 24.00 32.00 40.00 48.00

Figure 3.35(d) (cont.)




S RS

(x10° )

ALT

LCOP2

OMEGR

182

o

o

=

m

[w=)

S

o+

8. i ' J— 4 I - |

S.00 8.00 16.00 24.00 32.00 40.00 48.00
TIME

~ (spike to 6.0)

8|

4 I A L A A s

Q \/\/

8 \/\W‘vf\/ y {W

'0.00 8.00 16.00 24.00 32.00 40.00 48.00
TIME

[on ]

S]

81

o

(S

o+

w

8. 'S 4. e — 'y A

.00 8.00 16.00 24.00 32.00 40.00 48.00
TIME

Figure 3.35(e) (cont.)

o e




1?0.00

1‘25.00

Bester ey Bty
l("D.OO

[ el
7"5-00

XNORTH(X10% )

s0.00

2':": .00

183

/t = (0. sec

Iy

0.0C

’75000 ‘éO-DO

80.00

40.00

DSPIN

-25.00 0.00 25.00
YEAST (X100 )

50.00

75.00

-+

.00

.00 8.00

16.00 24.00 32.00
TIME

Figure 3.35(f) (concluded)

40.00

48.00




P

e ———

45.00

0.00

184

OR

8r = -25° 'w

o 45.00

45.00

0.00

16.00 24.00
TIME

OE

Se = ‘210—)

45.00

. +

45.00

16.00 24.00
TIME

Sa = 15°-l

0.0Cc

DA

F;45.00

16.00 24.00
TIME

Figure 3.36(a)

Spin Entry
V=0, V=443 fps

Time History:




185
8
i -7
(DS- —
ZC
o
]
i o
=
v +— + —+ + — 4
0.00 8.00 16.00 24.00 32.00 40.00 48.00
TIME
(=]
=
ST
!
: 8
) col
i —
(V8]
) aa]
b o
| =
i o
¥ + 4 — + —t —
0.00 .00 16.00 24.00 32.00 40.00 48.00
i' TIME
, 8
|
o
‘_ o
: S
TeT
a-
]
a
- 8
: — + + } —+ —
S .00 8.00 16.00 24.00 32.00 40.00 48.00
TIME
Figure 3.36(b) (cont.)
4
1
— T o - == it




[ v

186

89.00 190.00 1

4
T

60.00

XNORTH(X10% )

40.00

20.00

t=0. sec
/

0.00

-60.00 -40.00 -20.00 0.0 , 20.00 40.00 60.00
YEAST (X10" )

190.00

50.00

OMEGA

.00 8.00 16.00 24.00 32.00 40.00 48.00
TIME

.00

Figure 3.36(c) (concluded)




™ — s — - Somtnant Anotmtns o U o—— [A— Vo .
2 =
M "
o o

1 ¢ 1
)
vixig ) THETH(XISQOO

R(X10' ) arxio' )
13.3® -108.00 3

_—
O

FIGURE 3.37
sa=0°, &r=10°

Time History: =0°, .
e stepped from 0° to -14°, 2° at a step, at 2 sec. intervals) 187

_ 8l \ \ \/\f\/'\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\’v\

PHIIX10

B.00

.00

ja.m

AL

10 T’»——\k
al
- e

o MM st AR AN
o \[JWVV VVVVVUVVVVVVVV

g /W T W\h” | W Vﬁ an nv{x Kf\vﬂvf\
3
IR AT
S W‘MW it




DR

DA

188

(=)
e
8-»
(=]
=
8 4 y ; —+ ; —

0. 5.00 10.00 15.00 20.00 25.00 30.00

TIME
=
vy
-
8- -
) k
ér = -25°-)
g
‘g )y 3. 1 d d 4
‘0. 5.00 10.00 15.00 20.00 25.00 30.00
TIME
[am}
=]
W
-
da = -15°—l

8 /
o
8
le e L. 4 4 4 #

0. 5.00 10.00 15.00 20.00 25.00 30.00

TIME

Figure 3.38(a)
Time History: Spin Entry; Se=-21°, V=0, V=443 fps

s r—p g Vg om—

P - ————

AR e rum e e




LS e T

189

(=]
&
8T
o
S
%g..
Q.
-
a
8! 4. L e e 4 '
%.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME
(=]
&
8!
(=]
e
Q4
(T3]
x
8. 1 1 L iy - e J—
Ls T L T T 1
.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME
[ ]
S
T
8
o
o
©
S
g + " } } 4 —
0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME

Figure 3.38(b) (cont.)




| o s~ exBe

190
(=]
e
8]
(=]
S
%8“
wi
by
[w]
%.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME
s
&1
U)S. T —
20 N
[Vl
o |
—
8
o —— 4 } + + y
0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME
Q
a
Q4
[42]

8 [\[\A[\/\/\

@
SR AARTAIAAA
&
2
0.00 S-UJ 10 00 15 00 2000 25 00 30 00
TIME

Figure 3.38(c) (cont.)




XNORTH( X10% )

DSPIN

13.33 26.66 40.00 53.33 66.66 80.00

00

80.00

40.00

-40.00

%

F
\J

¢;==0. sec

-13.33 00, 13.33
YERST (X10° )

-26.66 26.66 40.00

10.00 15.00 20.00 25.00 30.00

TIME

$.00

Figure 3.38(d) (concluded)




DR

DA

192

89-00

ST

g

(]

(=]

=

8 — : - : } —~

0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME

o

o

4

-

8

o

L ér = ‘250 \

[m=]

=

wn

v + : + —+ { —

'0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME

o

=

Q1

8a=15° —y

8 [

(=)

8

le - i 4 4. 'l J

'0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME

Figure 3.39(a)

Time Hjstory: Spin Entry;
se=-21°, V=0, V=443 fps, ¢0=60°

— e ‘ema Wy W

—,

o e e
-l i #E. .

|




| api)

193
o
=
KT
[en]
=
Em-»
I -
a-
—d
a
8. 1 i 4 4 4 Jd
.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME
3
81
8
O 4
(T2]
o
8' /J I y - Iy y d d
“h.0o 5.00 10.00 15.00 20.00 25.00 30.00
TIME
8
Q =t
-
: ” AN AN A ~F
TV \V
= \/ \/ \/
8
? % - : L Il 1
0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME

Figure 3.39(b) (cont.)

L e




OMEGA

TURNS

BETAR

194

[
=
84
[o=)
e
T
8' s Iy L 1 4. —
%.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME
81
-
8 N
O | ——
8
v + 1 n +- —~- 1
'0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME
o
e
[N
[1a]
g
i
8
, + - + + e ey
0.00 5.00 10.00 15.00 20.00 25.00 30.00
" TIME

Figure 3.39(c) (cont.)




195

4;9?.00

66.66

5?.33

49.00

XNORTH(X10% )

26.66

13.33

t=0. sec
+ +— .’{
) -40.00 -26 .66 -13.33 .00
! YEAST (X10

0.00
4

.33 26.66 40.00

w

1
L

80.00

40.00

DSPIN

5.00 10.00 15.00 20.00 25.00
TIME

.00
g
@ L

Figure 3.39(d) (concluded)




196

o

<

o4

®

@]

o

Q

g + + : — —— 4

0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME

o

3

w4

b 4

o

Q

c

% \ 8r = -25°}

o

Q

L

Y t + t + ' —

0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME

o

Q

w4+

v

Sa= 15°)

0.00
~

0A

<45.00

.00 5.00

10.00 15.00 20.00 25.00 30.00
TIME

Figure 3.40(a)

Tjme History: Spin Entry; .
se=-21°, V=0, V=443 fps, ¢,=60°, 6= -50




R

[ Y 1

L g |

197

o

=)

gt

=

%Lg«-

[« 8

—

a

8- 4 4 i d e d

%.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME

o

S

8

(o]

=)

Q4

(Vg

e

8’ + : + . —

.00 5.00 10.00 15.00 20.00 25.00 30.C0
TIME

[va}

S

O 4

w

5 ANNNNAANN

ARV

° Y \/\/ \/ Y

o

C-r

@ +— + + —— + {

0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME

Figure 3.40(b) (cont.)




198
(=]
=
81
(=]
g V‘/
&2t
uJ
r
(]
8. i e e i <4 4
h.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME
8
8]
. nS
zZ0
x
e |
P—
(=) {
o
- —+— + —— + ~ 4
'0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME
g .
ol ¢
m
8
o’
’—-
[V}
[sa]
[}
C.) R
® 4 + ; 4 4 i ;
0.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME
i‘
Figure 3.40(c) (cont.)
? -

€ Fadraw s



e,

F - am ~—

XNORTH(X102 )

CSPIN

199

49.00 53.33 6?.56 89.00

26.68

13.33

/t =0, sec
. 40.00 -26.66 -13.33 00, 13.33 26.66 40.00
YERST (X10° )

0.00

80.00

40.00

g \’/\/\«f\/\/\/\/\/\/\/\f\/\ﬁ\/\/

.00 5.00 10.00 15.00 20.00 25.00 30.00
TIME

Figure 3.40(d) (concluded)




200

15.00 18.00

12.00

XNORTH

(x10% )

ALT

15.00
|
8
[ 2®
15}
8
Eih
8-J>. y— N N N N |
.00 8. 16.00 24.00 32.00 40.00 48.00

TIME

Figure 3.41

Time History: Flat Spin;
sa=15°, de=-21°, .. [-25°, t<15 sec
¥=1-29.5°, £315 sec

o et e




e T

P

-
3.

he

DA= 15.0
DE= -21.0 201
S D UUUuU J Luuy G LLUuo
1] £ UuUuUY K LuuLy R LiLLJUY
L FUuLuuLy M LULLJU X LLLy
A UuU G UUULUULY N LUYUUUU Y LLLuy
o 8 UUU H LU 0 LLU 7 LLLL
o C Juuu 1 LUU P LLUU
o
T
(]
Q
QO
Q1
[wp)
Q
(o]
o
N
[ew]
Q
o
5
o
Q
o
=
o
e
.C:"
8
) v
=3 KU - + | :
-33.00 -27.08 ~24.00 -21.00 -12.00
DR
Figure 3.42
Equilibrium Surface: r vs. ér

V=443 fps, g=0




.

202
e IR Y e L L.
e e st g g e P eI NTT NSNS NN N T NN
18.75 25.00 31.25 37.50

L
+
[}
w d 4 & 4 " e —_— e Y . — ry m-
00°9 00 91- 00°9 00°81- 00 O¥ 00°0 00°01 00°0E- EE°E 00°01- €5°€1 00° Oy 89891 00° 0S- 99°91 00 05-°
{ -o_x:Im ( “oﬁxumhurhw ( _oﬁx; g ( ~oCﬂz.._ ( .o;E 0 d
)
5
o
§ w

TIME

Figure 3.43
Flat Spin; éa=15°, Se=-21°, 6r=-29°

Time History:



DAR= 15.0 203
DE: U-O
) D UUULY J Luwy Q LLUUU
u £ UuLUUU K LUUuU R LLUULU
L F UUuuuuU M LUUUUU X LLLU
A UU G UuuLuUuUuLU N LUUslLUU Y LLLUU
o B UUU H LU 0 LLY Z LLLL
S € uuwy I L P LLUU
: [en]
. S
:
i (o]
‘ Q
o
? ®
!
J 3
‘ o
©
%
1 8
! S
bt
|
0:0
Q
3 =
N
[an ]
Q
(=]
| S
Q
Q
O. L 1 1 L 1 g
o<} i v T L T
~30.00 -27.00 -24.00 -21.00 -18.00 -15.00

OR

Figure 3.44(a)

Equilibrium Surface: r,o,p vs. ér
V=443 fps, g=0

-12.00




DR= 15.0 -
DE= 0.0
S D UULUU J LUy Q LLUUUY
u E UUUULU K LUUuUY R LLULLY
L F UluULLU M LUUUUU X LLLU
A uu G UUULUULUY N LUUULLU Y LLLUY
B UUU H LU 0 LLU 7 LLLL

g € uw [ Luu P LLUU

-

Q©

fan ]

Q

o

@

[an]

Q

[€o]

[\

(]

Q

N

t\

a

[en]

Q

© -

o

Q

- -

<O

[en]

Q

2 ¢ F + —+ + 1

~-30.00 -27.00 -24.00 ~-21.00 ~-18.00 -15.00

OR

Figure 3.44(b) (cont.)

v — s

_32-00




i DA=  15.0
205
DE= 0.0
' S D UUULL J Luuu 0 LLUUU
U E uULULU K LUUUU R LLUUUL
L F UULLLUU M LUlULU X LLLU
A uu ¢ UUUUUULY N LUUUUUU Y LLLUU
' B UUU H LU 0 LLu Z LLLL
Q ¢ uuw U LUU P LLUU
| ‘
}
| 8
1 T
|
8
ol
m
(]
Q
N
o)
,
a
[en ]
) Q
[en]
N
b

24 .00

20.00

. 30.00 ~27.00 -24.00 -21.00 -18.00 -15.00 -12.00
DR

Figure 3.44(c) (concluded)




206
3 I Guddu 4 Ldou TolLJddu
u TR NN RN Pl lddlu
L T Uuddduo | T IO LI W )
poug C uoddeucy N Liddoou ToLLLod
B Lo .ol 3 1Ly 2 iLLL
= L Udde Ygd P LLdd
< -
hd
o
- W)
|
= .
9
-
s
8 s,/
m 4 r/
~ e )
L/
e
L
< L/
. - y
7 /L
] ’L
a V
> /
=X L
[N
; N
=5 Y
_— \LJ
-~ \U
| U
30 \U\
o U
— i L 1 i 1:\1_1 !
~ T ¥ AR v 1
11.00 12,60 13.40 14.2G 15.00 15.
ok
FIGURE 3.45
Equilibrium Surface: « vs. da
se=0°, 8r=-25° V=443 fps, g=0
t
!
1
e e

[S)]

[sy]



207

3 T Totlogu
o TS A ) Polliceu
' h Vuder w . ) X o
5 o LA Lo N L Lo sdu L I
T Ly S 2 otLs S otLte
8 T Jouu ! [ oL
. <
)
i
|
!
[ [=] ‘
| |
I -
' S/
- -
o z
ot o
n/’/’ )
in o
N =7
[ f q/
1 ? iy
! | -
2 ; :‘/
g o /
4 o 7
| |
7!
o | \U
= \\
. Jo
[l \U‘\
| T~y
—_—
: ~—U . _
8 ! — R
* \U
=+ + t — +
oo 12.00 13.00 |4.00 15.0%
DA
FIGURE 3.46
Equilibrium Surface: o vs. Sa
se=-21°, 8r=-25°, V=443 fps, g=0
.




208 |

S 0 uuuyu J LuULUY N
U E Uuuuuu K o Luuuey ©
L F uUuuuuu M oLu.Loud X
A Uy G uuluuuuuy N LU suLd Y
8 uuy H LU 3 LLL {
8 C uyuy 1 LUU PoLLUY
=7
- (sa,%e,8r)=(25,0,-29.5) \
| - o 0 ={-K° ° L
. L‘HJLQEASGa’Ge’Sr) (-5°,0,29.3°) s
- W
@ WH)H gul’
Manifold B Manifold A
(Fig. 3.34) SPIN REGION (Fig. 3.34)
wn
8 = . . —_— — . o
Lr DEPARTURE REGION
U
(sa,se,6r)=(0,-28,0) ~
8 L
>
ol L
T ]
]
: L
: L
L L o
™ L S l}" N(sa,se,6r)=(0,0,-25)
™ | Hopf Bifurcation H 5
QT 3
5
S 3"
S.S S @ SS
s, s
; 5 ¢
ot s
(sa,se,8r)=(0,0,0)
o
< S
= -+ 1 ¥ t A o
-270.00 -146.66 ~73.33 -.00 73.33 149.6€6 KRS IS
R

Figure 3.47
Equilibrium Surfaces - Composite Angle of Attack vs. Yaw Rate at
Various Control Settings




2R

el O Gmeeas 2 GEEER 020 AR 0 0 0 S

209

L R PR ) -
o e
S o -
Q
D
N .
; ;
D
Qi
..
A
X A
o;
°|
o . ‘.;
S~ %
o ‘ .
> R
§+ VR
o N ~
o we
Q- J’;)_‘v
= hedL
- s i,
"‘j-l .
se=0° V_~§
J\J' “‘ NAV
o &.'0 L ‘\;‘\\":\J'v
g‘ __”U‘“ -
o —
—
te=-11°
; se=-21°
i
o
q:
81 1 R
-21.50 -25.00 -22.50 ~20.00

DR

FIGURE 3.48(a)
Equilibrium Surface: Comparison of Elevator
r,a,p vs. 8r; sa=15°, V=600 fps, 9=0

———
-17.50

- ‘50 Cl‘:

i AP




1Ly
LLlgg
L RS A Ll
o ._QL;-_L‘ &h " ‘
Q TRel
&.y. * e,
\»‘“w"}‘;
‘ ~5&¢EW”W
ol N
=5 T
; R
| 13
| 5,
o: TN
= '3,
N— l§
~ R
R
3:._.'3-'-,—4-"“‘"—“"’”
o
Q .
8_
o N
o
S+
3
3 4o e} Y O —— Cep—— - -
-30.00 ’27»50

210

FIGURE 3.48(b) (cont.)

USSR Sebtii



211

s e

Ve o

“

Lww s e w

TR
Low

'

. \*!,x e
00 b7

’22 -50

OR
FIGURE 3.48(c) (concluded)

RN B
‘25 :00

"'27» 50

8

-8

60 0z"

_I*v-




——— g e

4

i

s 1
[ ~
[ [
- e
e .

s -

212

.........

v
i f -
N [
Livooo K -
Moo
~ g
ORI
BN N
A
: Lu

i -L.L
i ‘-L
8
8.
N? ¢
] V=443, g=0 :
o
. S -
. B - LI
! —t ) 1 \ ~
o -
— L v
. b
~{ e T
g#0 <y Uy
NN !"\! |
Vi - '
28 o - ;
s #
g 2
Je -
= T ‘f'
2 .
"G ‘ -
IS ' -
o R
8 AU e
gL S
= 3
Sz
;4:.1';
(e "
——l

~

h \
} ' v u
8 4‘~.'_'\:~--—~‘rr—‘??":‘1_‘ 'j"'_::_’t, 9 ¥
- [APRIL A

0 5. 00

e ——— ey e e

-f- o P
-217.50 -25.00

-+_______\ -

o PR :
-22.50 -20 00 -11.50

DR

FIGURE
Equilibrium Surfaces:
r,a,p vs. ér; sa=15°,

3.49(a)
Comparison of V, g Effects
se=-21°

-15.00




76.00
-\.4____ -

|

o 5@ -25.00

213

...... PN L S

Voo
T ® g
“,4\)0
[y vl 4
R A
' MY S
, .«‘JJ'YJ
L
;‘s' A
e
~dr
K
o\
>

) Tt B

DR

FIGURE 3.49(b) (cont.)

-2000




- —

3 ~ossas 214 Lo
c IS T n
L I ! cvou [ '
R Ul G Cood N llvu : !
8 Uol N o 2
8 C dodu 1 0s ol
-
<
¢
V=600, g=0
R VA L
8 °
— ‘.JI)
g 3.
<
Sy |
(o] oo
S RN
S
Lt o b
8 : LL_LL‘-
(\"“ . L ¢ [ L
L9 I Y . [ LL
VSR T ——
Gtk v o ST
~ . — s ro -
o v ;
~ Goontl ¥
! LS
8 3"'/7.: .
Q o Suo
T \\‘. - - f
~
.
o i
Q cot
>l V=443, g=0 cou bt E
~N

20.00
+.~—-
|

vaLiL(['L- _—"‘

8

—t

g#0

-25.00

't —

‘2 2.50 | '2&. OO
DR

FIGURE 3.49(c) (concluded)

4 -
'2?050

-17;Sb

-IS-OC

=T

—




1?0.00

Ao mar~ 8

131.00

b

112.00

93.00

74.00

s | —— ———— [ m— — Sumatusch

55.00

215

- YUuw o : e [
- S S .
w Luwuo . [SEVIVIW P s
C [ .. . o i
. LRV VRO, CEERL N R Y X [
Vo . o PR
Lo ¢oudedoans LTS N S A
R . .
e s L L.
: v ) .
PR ) - Lew L SN
e
N
L
-
b1

A TS R ST U U A B SO U U O N U U O N N A

? g o . .

L 4

-+

-
i

FIGURE 3.50(a)
Equilibrium Surface: r,a,p vs, 6a
6e=0°, &r=-25° V=600 fps, g=0




i ————
‘ v——
[=]
o
- L[]
) TL
[ J
< ® .
. )
hJ p) “
Y ) ) a
PG B R A -
37 oL .
VR B — .
s - -— "
(1 = ~ L_ o
- po
~ " b
-
-1
. M )
) ) ) .
YY) b]
L B -
B I . —
.
- >
Y LG sq m
- m [ & ]
) Jf- ~—
m — —
o~ —_ L0
. H L
E R o
) ~ QL w
4 . .
) N ) ™
7Y 1Y)
EEEE R — w
Y ) ) s o
Yy 2 s - =2
fpo b B BE BE 3 G
T St
Yadul L T - o u
- o
T
4
-
4 -
IR ,
P -
(=]
AP R Ggits N 0.
(]
j— 4 - — -4 -~

l_ -
Q018 00°2L 00° €9 00° bs Y

g




J
} } =
PR -
. -
AR e
tyns w >
> -
)2
AR -
1Ty o b .
I IR s
L ERVERPEES B _
" " PR} 4 .
NET 2l B
—
—
3
~ T3 —
— J 2 -
[o VIS B |
YTy Ty ) -
PREPIRS I ‘
P s
2Ty -
3D D _
Y DT — e
1) -
) 272 —
- 2 D

I LAt

w.l.\"ll.,‘li)l-l’ il T B +-
Coer 562! o0 44 00°09 Qo°¥s

¢

» ey S——— S ——— Sum———y | cananel) [l

ac e

-~
...

- 8000

1-
8.00

4
-16

OR

FIGURE 3.50(c) (concluded)

—

o ew s ssumas G



R

Time History: Spin Reversal '
0, t.6 -21, t-60 0, t.2
‘a =< 15, 67t.42 ‘e = ‘r =< -30, 2-t:42 218
-15, t-42 0, t260 30, t.32 '

) PHI(X]

THETA(
o

viXio

o AT VAV VUV VAV

o
o VAN

AN a o
NAAVAAYAY A A 2 YAVAVAVaVAVAVAVAVAVAY

2. R:=0. 7
.0 ot
_ ’ MV\’_\_’ —_—

WIEAUAUA\IAUAUAUAUAUA ] W%%

M%
Eff\/\\}(\{\r\f\nmnnl\ﬁ/\/\ MI\PN\ f
ER A A
LU T




Q.
(=]
e
$ e B + e e
0.00 8.00 16.00 ~24.00 32.00 40.00 49.0C
TIME
(=]
Q
l"l-\,
8r = 25°'}
g
o e e -
o
D [}
o a1 = -25
=
wn
- + - + e e TR
0.00 £.00 16.60 24.00 32.00 40.0Y 48.00
TIME
[
Q
[Tgpe §
-
da = 15° 7.5° 0°
8 - T
ot e e e e e N L
a
e}
g
Q.
¥ e e e e e
0.00 8.0C 16.00 24.00 32.00 40.0¢ 45.00
TIiME
Figure 3.52(a)
Time History: Spin Recovery; de=0°
;
!
{
- - m— o - PRIt S

219

80.0n

0.00
<"

+
b




90.00

220

-

AAAVIVAVIVAVAVAVAVAVAVAVAVA

24
o'
—
a
8. —14 s i e — — {
S .00 8.00 16.00 24.00 32.00 40.00 48.00
TIME
[
e
21
8
21 NAV AV AV VAVAVAVAVAVAVAVAN AV
©
o
8‘ _,_+______ y3 < ——d ———— P . _———
.00 8.0 16.00 24.00 32.00 40.00 48.00
TIME
o
=
O 4
wn
8
S _ Vb _ e
t
- v
8
? 4 — ' — + 1
0.00 8.00 16.00 24.00 32.00 40.00 48.00

TIME

Figure 3.52(b) (cont.)




g

OMEGA

TURNS

BETA

221

1530.00

g J\ i

8+ ‘ Vi \/ \/

8

: - + - + — ey
.00 8.00 16.00 24.00 32.00 40.C0 48.00

TIME

o |

<

s

g

24

8

e S s R R -
.00 8.00 1b.00 24.00 32.00 40.00 48.00
TIME

(o]

=

[ 8

m

g \

& KJ -

o
=
R — j—- S
0.00 8.00 16.00 24.00 32.00 40.00 48.00

TIME

Figure 3.52(c) (cont.)




222

- - .- -- pm me e - = - i
0.00 05.70 30.u0 45.00 1 60.0C ERN yC.0C
YERST (x10° )

- = § ———

eI B e ST
. 8.00 16,00 24.00 32.00 40.00 48.00
TIME

Figure 3.52(d) (concluded)

Bl AR WM e mem e e e e T

|




120.00

e

30

<40

<50
60

40<t<
<

t<2
2<t<8
8<tg
t
11.3, 50<t
t>60

11.3, 30<
L25’

1.5,
14,

(0,
7,

.00
sr =4

PUPRRR ST

|
i
g |
L m >
N - o - <
SR S b T rrae i 8 e}
LTI e _ T Tt ! S !
R pitors et V TToiTma e _ e
R - = . : | o= R
=== T T | —~—zTT T e T | © - Vv
— . — ] oo e
——e —_— pian o /ma.u\S
"[I'Il‘l - — ———— ———— e »
R S — W lr'd””.;'l\l\l.l\“l””,\.\.T m o. : —
e . ! - = « To
e | T8 Lx>
o e e i =
TR TR T W3
Sl SR — e T T I
—— T - [ T
_— T

Time History:
fe =

- . e -
it U & e B < S
s - . 1A
- o] - - +

[1
15, t<70

—_— e —— rH - ) - 0..
- IUH:)J.\IHMM\ . - e Tee— o w. "
T 0 e 1 |
I e e DU «©
R TS ._
S 3 ]
- -1 - - - - . m
_

-~ - - TN L A




120.0.

-—-1
120.00

i
100,00

.
106.00

'Y
106.6D
100-00

90.00

— g ——

——ts ———1}
60.00

' g T
——— e — .
— et
R (o' ~—t — —
) ! < -~y — =

{
|
v
FIGURE 3.53(b) (cont.)

< Q % 8
A s e S . -3
R B o e i :
_ i H“Muq:.‘.u' ' s

00
00

:

l
0.00

3 ! +g - | e N S R w
Qg @0y 00°L 00'1-"  000C 00°0 00°0Z-">  00°08 00" Ob 00
SN3NL b138 bHd4Y

e




225

a Lo e | -

.00 20.00 40.00 0.0 80.00 100.00 120.00

8?%00

XNORTH( ¥10% )

0.00
O %

g a
100,00 120.00

o
Q
S
.y
S —
o
S
5
g i
&
£
8
8
>
o

80.00
|

4'0.00

l ' ' ) iy . . ' . .
1 ' . L I A Lo -
’ 8 l el l. DRI 8 \'-"VV“‘ et e

B B TN o ———— — e e ——— s -

o .. —- - . +_.__. l
©o.00 20.00 40.00 60.00 80,00 100,00 120.00

FIGURE 3.53(c) (concluded)




226
(3 .
: | l
; . -
o : b '
S
S tLL
L l
LW
L
‘W
L «
S
D
S
o U"}l
S + W i
ot ‘z’uv
s {
pevY ,
3
8db
[
]
|
o SIVVIAVAVIV VIV Y
+ - p——tLLlih ; : !
~-30.00 -20.00 ~10.00 Q.00 10.00 20.00 30.00
FIGURE 3.54(a) '
Equilibrium Surface: r,a,p vs. ér
sa=15°, se=-11°, V=600 fps, 9=0 '
i
!
————— T ——
o g T -




- A I

75.00 90.00
-

60.00
R 'M .

4'5 .00

300

15.00

0.00

~30.00

.. — +
-20.00

221

pugroe et

——— c—— e e
—10'09 0.0D 10-00 ”nm

DR
FIGURE 3.54(b) (cont.)

|
30.00




228

yuby
J V)
W %
h %
g 0
Y
S v
3 4
5 A
3 y
5 3
S A
L
W
T SO 16 S S
“20-00 —\0.00 O-OO 10-00 20-00

OR
FIGURE 3.54(c) (concluded)




CHAPTER IV

Other Topics

During this reporting period, further work has been performed to
understand the nature of the nonlinear high-a dynamic behavior of air-
craft H (Mehra et al. (1977)). In this regard, there are two topics
which merit discussion at this time. The first topic, exploring the power
spectra of some motions, is part of an overall study which will be ex-
panded on in the future with the F-4 aircraft model. The second topic

deals with using our knowledge of the global (nonlinear) characteristics

of the aricraft model of interest to synthesize a command/stability aug-

} mentation system.

4.1 Power Spectra of Time Histories for A/C H

As a means of gaining further insight into the nature of the Hopf
Bifurcation and the (imit cycle motions which subsequently arise, we have
studied certain time history responses of aircraft H in order to see
whether responses become multiperiodic and tend towards nonperiodicity
‘ or chaos (Ruelle (1977)). It was shown previously (Mehra et al. (1977))

that most of the aircraft H time histories exhibit one of the following

two types of motions:
1) the state variables behave in a noticeably periodic manner, with
an amplitude growth/decay time constant which is much greater than
the interval of interest over which the motion is observed;

2) the motion decays to a steady-state equilibrium in which all of
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the state variables arrive at a unique value, without oscilla-
tions.

However, there are initial conditions and control settings which
produce a response that appears to be erratic and it is not possible
to conclusively determine whether or not the motion possesses limit cycle
behavior, based purely on an inspection of time histories. Ruelle (1977)
states that when a motion contains at least three basic frequencies, it is
possible for the periodic response to appear random in nature, due to cer-
tain nonlinear perturbations.

It is therefore worthwhile to Took at the spectra of these responses.
Aircraft H has been used in this study, because it models adequately the
kind of nonlinear terms which generate periodic behavior. The spectra
used here are merely the Fourier transforms of the autocorrelation func-
tions of eack of the state variables (p.q,r,o,8) computed from their time
histories. A routine from the IMSL library package was used to generate
the spectra.

The control values for which spectra of resulting time histories were
computed are shown in Fig. 4.1. These figufes are taken from the report
by Mehra et al. (1977).

Fig. 4.2 shows a time history which is well-behaved. The small tran-
sient behavior at the beginning decays rapidly to steady state values for
each of the states. The controls for this case are héid at sa=0°, se=2°,

§r=5°, and the initial conditions are o= g=p=q=r=0. The corresponding

spectra are shown in Fig. 4.3. These are generated for a time interval from

2 to 100 seconds which includes the initial transient motions. Note that

¢ ——

~>.-‘
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there are 2 frequencies, a secondary one which has roughly twice the value
of the fundamental frequency, the latter being about 0.40 cycles per sec-
ond {(cps). Note also that the secondary frequency appears only in the
spectra of the longitudinal variables, a and q. The control settings for
this case are in the linear region, so such decoupling is not a sur-
prise. Averaging effects have reduced the amplitude of the spectra (i.e.,
for most of the time period over which the spectra are computed, the system
is at equilibrium. The amplitude thus changes with the ratio of transient
time interval to total time interval).

Fig. 4.4 shows the results of computing the spectra over the time period
22 to 85 sec. which effectively avoids all transient behavior. The mag-
nitudes have been reduced several orders of magnitude, and the secondary
frequency has vanished. Note, however, that the fundamental frequency
js still detectable, and it still has the same value (about 0.40 cps).

Limit cycle motions were next studied by repeating the above run,
except for da which is set at -18°. Since the initial conditions
are again at the origin, a Hopf Bifurcation (i.e., jump) to a limit
cycle occurs for this value of &a, as.seen in Fig. 4.5. The resulting
spectra, shown in Fig. 4.6, indicate that the fundamental frequency
is about 1.3 cps, with a secondary frequency at about 2.3 cps and
hints of a third frequency (see the p spectrum) at 1.05 cps. The major
difference from the sa =0° case, however, lies in the amplitudes of the
spikes, which are at least three orders of magnitude greater. The spikes
are sharper, indicating a "clean" oscillation (the spectrum of a

pure sinusoid is an impulse located at the frequency of the sinusoid; the

|
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spectrum of white noise is a constant over all frequencies and is propor-

tional to the power of the signal).

A run was next made with fa=-6°, =2, 3Ir=07, and initial conditions

=-46.3, g=23.4, r=59.2 deg/sec, x=-2.39°, :=-31.5°. The time history.
Fig. 4.7, indicates evidence of at least 2 frequencies. The corresponding
spectra, Fig. 4.8, show a dominant frequency at 1.2 cps, and three sub-
harmonics at about 0.15, 0.3 and 0.45 cps. As in all cases except Fig. 4.4,
the time interval for the spectrum computation in 2 to 100 sec. The some-
what irregular spacing of the high peaks in Fig. 4.7 gives rise to the
cluster of 3 secondary peaks in the spectra. The absence of rudder in
this case may explain the lack of secondary frequencies in the spectra for
8 and r, the two variables most directly dependent on &r.

Fig. 4.9 shows a more erratic motion, and its spectrum is in Fig. 4.10C.

The initial values for the state variables are again zero, and 8a=0°,
Se=2°, and &r is moved to 10°. Again the roll motion (p) is dominant
with a primary frequency of 0.375 cps. The pitch rate (q) motion is less
periodic and has several frequencies. It is not clear, however, whether
any chaotic regimes exist for aircraft H. MclLaughlin and Martin (1974,
197%) show that in fluid flow, chaotic motions can result either via a

phenomenon known as an inverted Hopf bifurcation (i.e., existence of un-

stable limit cycles at control values below the control values for which

a pair of complex conjugate eigenvalues crosses the imaginary axis) or via
normal Hopf bifurcation exceeding three in number. (Ruelle (1977) has
shown, however, that chaotic motions or "strange attractors" are possible
even after three Hopf-type bifurcations.) Since the order of the aircraft H

model is five and at most two pairs of complex conjugate eigenvalues can




A, O
e

e /=

233

cross the imaginary axis, "strange attractors"” cannot be present if
only normal bifurcations are considered. At this time, it does not
seem that inverted bifurcations are present in the aircraft H model,

though this does require further study.
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4.2 Command and Stability Augmentation

Progress of a significant nature in this area awaits the development
of the spin bifurcation algorithm, discussed in Sec. 2.1. Using the
current algorithm several computer runs are required in order to generate
adequateiy all of the branches of the bifurcation surfaces in the two-
dimensional control space. When the third control is varied, an entirely
new surface must be generated.

However, the results developed so far for two-dimensional command
augmentation systems using the aircraft H model of Mehra, Kessel and
Carroll (1977) have been very promising. The (two-dimensional) bifur-
cation surfaces are used to define relationships between the two control
variables which serve to expand as much as possible the region in the
equilibrium-state space for which bifurcations are avoided. Work has
been centered to date on the control pair (sa, sr). Command augmentation
gains relating dr to 3a are generally called aileron-rudder interconnect
(ARI) systems. ARI gains cause the rudder to deflect in conjunction with
aileron movement. The purpose is to compensate in some manner for the
effect of changing flight conditions on control response of the aircraft.
The standard method of defining the ARI gains is to set them as linear
functions of angle-of-attack. By using BACTM, in particular the bifurcation
surface plots, it is possible to generate directly ARI, or any other type
of command augmentation, functions. This is a more general, or global,
procedure than those which reduce to a gain linear in a«. It does not
rely on localized analyses throughout the control-state space, but incor-

porates the global aircraft behavior information inherent in the BACTM results.
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Work done to date has used aircraft H bifurcation surfaces. For

each value of de, a surface was generated, and a linear relation-

ship between rudder and aileron was derived.* The criterion was
to expand as much as possible the "non-catastrophic, non-limif-cyc]e“
region in the control space. Since each setting of ¢e corresponds to an
equilibrium value of angle-of-attack, a, the BACTM ARI gains can similarly
be plotted versus a. Fig. 4.11 shows this plot compared to the linear ARI
gains selected by Gilbert, Nguyen and VanGrunst (1976). The main point
to be made here is that the general sense of the two plots is similar.

(In Fig. 4.11, the values at the break points refer to the elevator deflec-
tion, in degrees). The gain values are of comparable magnitude, and a
"mean slope" for the BACTM points would not be very different. It is
felt that the BACTM method would result in better overall performance
because of the global stability information inherent in it. Work will

be continued in this area with the F-4 model.

*BACTM does not require that this relationship be linear. Later results
may show better response for gains nonlinear in (sa,ér).
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CHAPTER V

Conclusions and Recommendations for Further Research

5.1 Conclusions

Based on analysis using BACTM of the aircraft F model defined in

this report, we can conclude that

(1)

(i)

BACTM has been succesfully expanded and modified so that it
now has the capability to perform analysis of aircraft in the
highly complex post-stall and spin regimes. This was achieved
by introducing more powerful continuation methods for solving
equilibrium and bifurcation surfaces, and by utilizing an
aircraft model with sufficient aerodynamic data to simulate
motions over extreme ranges of angle-of-attack and sideslip.
The aircraft F model was very useful for its role in the de-
velopment of the BACTM spin analysis program. Also, it was
useful for studying developed spin motion. However, the aero-
dynamic data as given cannot with uniform accuracy deal with
the wide variation in flight conditions which results from
maneuvers proceeding from trim to spin conditions. It is
necessary to begin using a more complete model, with the
aerodynamics divided into static, forced oscillation and
rotary balance data. In this way, combinations of the three
sets may be varied from one flight regime to another, to more

accurately simulate actual flight test results.

(i1ii) Spin study via BACTM can be made easier by assuming, on a




(iv)
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first-trial basis, that gravity effects are negligible.

This assumption must be applied with care, however, because
gravity plays an important role in post-stall dynamics as

well as most spin motions. Nonetheless, it appears to be
reasonable to apply this assumption to aircraft F studied here.
The transition between the non-spin and spin stable equilibria
for aircraft F is difficult to achieve due to the strongly attrac-
ting nature of the intermediate, high-a equilibrium region. The
BACTM analysis shows a high degree of nonlinear, oscillatory, limit
cycle behavior associated with a large domain of attraction and a
large region of structural stability for the limit cycle family.
Aircraft F in flat developed spin follows a tight vertical
helical path, which is characterized by constant speed,

sink rate, and a high, autorotational, steady yaw rate.

In this condition, the elevator is ineffective as a

control, and recovery is possible only by using the rudder

and aileron.

Entry into spin for aircraft F is strongly affected by assump-
tions about velocity. A spin of smaller amplitude oscillations
and higher angle-of-attack (i.e., a more flat, developed spin)
results when velocity is fixed, as opposed to when it is allowed
to vary. The fixed velocity case, for small a and 8

angles, corresponds to a nonzero thrust situation, with the
thrust neutralizing drag effects. When velocity is allowed

to vary in this report, zero thrust is assumed.




(vii)
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The stall departure region is preceded by a wing rock
type of limit cycle motion which is typical of modern

high performance aircraft.

5.2 Recommendations

Based on our experience during this reporting period, it is suggested

that the following areas be investigated in the future:

(1)

(i1)

(iii)

(iv)

The F-4 data should be analyzed using BACTM since it contains
more realistic aerodynamics, is well documented and well

supported by flight tests.

Computational development of BACTM should be continued, as
more accurate and efficient algorithms are needed, particu-
larly for the generation of a full set of bifurcation
surfaces.

More analysis should be made of the assumptions regarding
equilibrium motion in spin, particularly the assumption that
gravity can be neglected in certain cases.

More time history runs and analyses should be done with initial
conditions in selected regions of the state-control space;
the purpose being to more clearly define persistence of limit
cycle behavior and to establish boundaries for the domains of
attraction. Analytical and computational procedures need to

be developed for generating Hopf bifurcation surfaces.

h L daw warwere eem o e




(v)

(vi)

(vii)

Using aircraft F-4 data to generate bifurcation surfaces,
perform preliminary synthesis of a command augmentation
system using BACTM. This system should then be compared
to other systems in the literature. '
Using the F-4 model, study the role of thrust in post-stall,

departure, spin entry and developed spin flight conditions.

Determine the parameter values under which structurally stable

1imit cycles such as high-a oscillatory spins exist for a

given aircraft model and design dynamic control strategies

for recovery from such limit cycles.

b et—

el e




APPENDIX A

Notation

wing span

mean aerodynamic chord

rolling moment coefficient
pitching moment coefficient
yawing moment coefficient
Tongitudinal force coefficient
side force coefficient

normal force coefficient

vehicle total kinetic energy

force-moment terms in the aircraft

of .
Jacobian matrix of partial derivatives, [5;11
J

aerodynamic force

(constant) acceleration due to gravity,
9.8067 m/sec? (32.174 ft/sec?)

algebraic system of terms for generating bifur-
cation surfaces (Chapter II)

augmented Jacobian matrix of partial derivatives,

a9
i § » for bifurcation surfaces
ayj
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altitude above earth's surface

body axis momen.s and product of inertia, taken
about the center of mass

moment of inertia tensor (Eq. 3.2.38)

rolling, pitching, yawing moments acting about body
axes

aircraft mass
special vector;'Sec. 2.1.2
null space

angular rates about body axes (roll, pitch, yaw,
respectively)

dynamic pressure, %poV?
radius of helical path of airplane

range Sspace

n-dimensional space of real numbers

unit vectors in cylindrical coordinates; 21 is

vertical, directed toward center of earth
wing area

timé

time at which equilibrium solution is made
body axis components of V

airspeed, = |V|

horizontal component of velocity

aircraft center of mass velocity, inertial with
respect to local horizontal

aircraft weight

. ]
vector of state variables; e.g., for n=5 equili- A
brium system, x = (p,q,r,a,8)

—————



da,de,8r

V,6,0

e [-1,1]
ae (-1,1)

R

ofd A
[a,-j]
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augmented vector of dependent variables, for
bifurcation surfaces; e.g., for n=5 equilibrium
system, y= (5’53)’ where 85 € (sa,de,ér)

aircraft body axis unit vectors (x positive through
nose, y positive through right wing, z positive
down)

angle of attack, or incidence angle (Chapter 1I1);
also continuation variable (Chapter II)

angle of sideslip

control parameter; either &a, &e, or &r (Chapter II)
determinant of F, the Jacobian matrix

control vector, (8a,de,ér)

aileron, elevator, and rudder control deflections
(positive e is trailing edge down, positive da is
right trailing edge down, positive &r is trailing
edge left)

atmospheric density

Euler angles defining orientation of body axes

in the inertial reference axes (yaw, pitch, roll,
in that sequence)

angular rate about center of mass, VpZ+qi+re

polar angle in cylindrical coordinate system defining
aircraft position

a such that -1gagl

r such that -1<a<1l

the combinations [+) and (+] are similar; i.e., ae[-1,1) means

o is an element of the set A
o is not an element of the set A

a matrix array whose elements are designated by

aij’ the element at row 1, column j
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(a;) a vector array whose elements are designated by
a;, the ithlocation element

v indicates vector v is in inertial coordinates
T .
() matrix transpose
()* i) complex conjugate, as in Eq. (2.1.41)
ii) equilibrium solution, as in Sec. 2.1.4.1
Il x || the Euclidean norm of the vector x, i.e.,
n
_ 2 . n
I xll=y/ 2 x; if xeR
i=1
det(-) the determinant of the argument (which must be a
square matrix)
(") d( )/dt; also d( )/ds in Sec. 2.1.1
a equal by definition

Stability Derivatives

A aC.
Ci =3 for i=¢,m,n,x,y,z
£ g
and £ = 8a,de,dr
oC.
C_' é—llb__ , for n=p,r,B
n 3(fvﬂ)
oC.
Ci é—1c——,forz;=q
2 Azp)

In addition, the coefficients Ci and the derivatives aci/a{g,n,c} are
functions of o and B, and are usually determined via tabular or graphical

Took-up.
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